Skip to main content
Log in

Simulation analysis of micromixer with three-dimensional fractal structure with electric field effect

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, a micromixer with Koch fractal under electric field effect is simulated, and we studied the effects of different fractal parameters on the mixing process. These parameters include the number of fractals, the spacing of fractals, the geometric dimensions of fractals and the flow analysis of the fluid in the microchannels. Simulation displays that increasing the number of electrode pairs and increasing the fractal size are both beneficial to fluid mixing, and the optimal fractal spacing is 0.75 mm. The results show that the Koch fractal structure and the electric field effect can not only improve the flow state of the fluid effectively, but also increase the mixing index of the fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nguyen NT, Wu Z (2004) Micromixers—a review[J]. J Micromech Microeng 15(2):R1

    Article  Google Scholar 

  2. Han W, Chen X (2020) A review: applications of ion transport in micro-nanofluidic systems based on ion concentration polarization[J]. J Chem Technol Biotechnol 95(6):1622–1631

    Article  Google Scholar 

  3. Abdelsalam SI, Mekheimer KS, Zaher AZ (2020) Alterations in blood stream by electroosmotic forces of hybrid nanofluid through diseased artery: aneurysmal/stenosed segment[J]. Chin J Phys 67:314–329

    Article  MathSciNet  Google Scholar 

  4. Dehghani T, Moghanlou FS, Vajdi M et al (2020) Mixing enhancement through a micromixer using topology optimization[J]. Chem Eng Res Des 161:187–196

    Article  Google Scholar 

  5. Bazaz SR, Mehrizi AA, Ghorbani S et al (2018) A hybrid micromixer with planar mixing units[J]. RSC Adv 8(58):33103–33120

    Article  Google Scholar 

  6. Hossain S, Lee I, Kim SM et al (2017) A micromixer with two-layer serpentine crossing channels having excellent mixing performance at low Reynolds numbers[J]. Chem Eng J 327:268–277

    Article  Google Scholar 

  7. Raza W, Hossain S, Kim KY (2018) Effective mixing in a short serpentine split-and-recombination micromixer[J]. Sens Actuators B Chem 258:381–392

    Article  Google Scholar 

  8. Chen X, Li T (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel[J]. Chem Eng J 313:1406–1414

    Article  Google Scholar 

  9. Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer[J]. Anal Chim Acta 964:142–149

    Article  Google Scholar 

  10. Chen X, Li T, Li X (2016) Numerical research on shape optimization of microchannels of passive micromixers[J]. IEEE Sens J 16(17):6527–6532

    Article  Google Scholar 

  11. Bayareh M, Ashani MN, Usefian A (2019) Active and passive micromixers: a comprehensive review[J]. Chem Eng Process 147:107771

    Article  Google Scholar 

  12. Chen X, Zhang S (2018) 3D micromixers based on Koch fractal principle[J]. Microsyst Technol 24(1):2627–2636

    Article  Google Scholar 

  13. Gidde RR, Pawar PM, Ronge BP et al (2019) Flow field analysis of a passive wavy micromixer with CSAR and ESAR elements[J]. Microsyst Technol 25(3):1017–1030

    Article  Google Scholar 

  14. Lee CY, Wang WT, Liu CC et al (2016) Passive mixers in microfluidic systems: a review[J]. Chem Eng J 288:146–160

    Article  Google Scholar 

  15. Xia HM, Wang ZP, Koh YX et al (2010) A microfluidic mixer with self-excited ‘turbulent’fluid motion for wide viscosity ratio applications[J]. Lab Chip 10(13):1712–1716

    Article  Google Scholar 

  16. Wang Y, Zhe J, Chung BTF et al (2008) A rapid magnetic particle driven micromixer[J]. Microfluid Nanofluid 4(5):375–389

    Article  Google Scholar 

  17. Ahmed D, Mao X, Shi J et al (2009) A millisecond micromixer via single-bubble-based acoustic streaming[J]. Lab Chip 9(18):2738–2741

    Article  Google Scholar 

  18. Ding H, Zhong X, Liu B et al (2021) Mixing mechanism of a straight channel micromixer based on light-actuated oscillating electroosmosis in low-frequency sinusoidal AC electric field[J]. Microfluid Nanofluid 25(3):1–15

    Article  Google Scholar 

  19. Ajarostaghi SSM, Delavar MA, Poncet S (2020) Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method[J]. J Therm Anal Calorim 140(3):1321–1339

    Article  Google Scholar 

  20. Wu Z, Chen X (2019) Numerical simulation of a novel microfluidic electroosmotic micromixer with Cantor fractal structure[J]. Microsyst Technol 25(8):3157–3164

    Article  Google Scholar 

  21. Zhou T, Wang H, Shi L et al (2016) An enhanced electroosmotic micromixer with an efficient asymmetric lateral structure[J]. Micromachines 7(12):218

    Article  Google Scholar 

  22. Manshadi MKD, Nikookar H, Saadat M et al (2019) Numerical analysis of non-uniform electric field effects on induced charge electrokinetics flow with application in micromixers[J]. J Micromec Microeng 29(3):035016

    Article  Google Scholar 

  23. Wu Y, Ren Y, Tao Y et al (2017) A novel micromixer based on the alternating current-flow field effect transistor[J]. Lab Chip 17(1):186–197

    Article  Google Scholar 

  24. Nazari M, Rashidi S, Esfahani JA (2020) Effects of flexibility of conductive plate on efficiency of an induced-charge electrokinetic micro-mixer under constant and time-varying electric fields-A comprehensive parametric study[J]. Chem Eng Sci 212:115335

    Article  Google Scholar 

  25. Chen X, Zhang S, Wu Z et al (2019) A novel Koch fractal micromixer with rounding corners structure[J]. Microsyst Technol 25(7):2751–2758

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Young Taishan Scholars Program of Shandong Province of China (tsqn2020), Shandong Provincial Natural Science Foundation (ZR2021JQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Technical Editor: Erick Franklin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, S., Chen, X. & Ma, Y. Simulation analysis of micromixer with three-dimensional fractal structure with electric field effect. J Braz. Soc. Mech. Sci. Eng. 43, 332 (2021). https://doi.org/10.1007/s40430-021-03021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03021-5

Keywords

Navigation