Skip to main content
Log in

Detailed modelling and LQG\LTR control of a 2-DOF radial active magnetic bearing for rigid rotor

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The paper presents detailed modelling of rotor, electro-magnetic actuators, and accompanying electronics of an in-house-developed active magnetic bearing (AMB) test rig in a unified manner. The work is the extension of our previous work on a 1-degree-of-freedom (DOF) cantilever beam while in here, the challenging problem of levitating and spinning a 2 DOF rotor on a pair of opposing EMs is investigated. Classical three-term PID controllers are designed as a benchmark controllers, in frequency domain to stabilize the 2-DOF open-loop unstable system, and the performance is compared with the modern state-space control strategies, namely Linear Quadratic Gaussian (LQG) and combined LQG-Loop Transfer Recovery (LQG\LTR) compensators. The tuned robust controllers are deployed on a custom-designed hardware using Simulink Real-Time software. Dual axes controllers performed reasonably well when subjected to static and dynamic tests both in simulation and in experimentation. The key time domain performance objectives such as reference tracking, disturbance rejection, and minimal control efforts as well as frequency domain stability margins are accomplished. The validity of the developed model is thus confirmed through successful synthesis and implementation of both PID and LQG\LTR controllers, wherein the robust controller (LQG\LTR) outperformed the benchmark controller in terms of performance, i.e. minimal overshoot, superior disturbance rejection capabilities, and improved loop gain characteristics. The AMB actuator also showed reasonable dynamic behaviour when the levitated rotor was spun at 1000 r/min. The dynamic performance was evaluated through a two-dimensional rotor orbit plot. The study goes beyond theory and underscores practical design considerations and demonstrates real-time controller implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(F_{{{\text{net}}}}\) :

Net electromagnetic force

\(K_{{\text{e}}}\) :

Electromagnetic constant

\(s_{o}\) :

Nominal air gap

\(i\) :

Current

\(i_{{{\text{bias}}}}\) :

Bias current

\(i_{{\text{o}}}\) :

Static compensation current

\(i_{{\text{c}}}\) :

Control current

\(L_{{\text{x}}} \& L_{{\text{y}}}\) :

Coil inductance

R:

Coil resistance

\(K_{{\text{a}}}\) :

Amplifier gain

\(L_{{{\text{est}}}}\) :

Estimator gain

\(\Delta u\) :

Net applied voltage

\(\Delta {\varvec{x}}\) :

Change in rotor position w.r.t x

\(\Delta {\varvec{y}}\) :

Change in rotor position w.r.t x

\({\varvec{K}}_{{\text{i}}}\) :

Force current factor

\({\varvec{K}}_{{\text{x}}}\) :

Force–displacement factor

m :

Mass of rotor

\({\varvec{K}}_{{\text{P}}}\) :

Proportional gain of controller

\({\varvec{K}}_{{\text{I}}}\) :

Integral gain of controller

\({\varvec{K}}_{{\text{D}}}\) :

Derivative gain of controller

\({\varvec{K}}_{{\text{s}}}\) :

Sensor gain

\(K_{{{\text{LQR}} }}\) :

LQR controller gain

References

  1. Sun Z, He Y, Zhao J, Shi Z, Zhao L, Yu S (2014) Identification of active magnetic bearing system with a flexible rotor. Mech Syst Signal Process 49(1–2):302–316

    Article  Google Scholar 

  2. Yaseen MH, Abd HJ (2018) Modeling and control for a magnetic levitation system based on SIMLAB platform in real time. Result phys 8:153–159

    Article  Google Scholar 

  3. He Y, Sun Z, Zhao J. Shi Z, Shi L and Yu S (2013) "On the Influence of Controller Parameters on the Performance of Rotating System With Magnetic Bearings." in 2013 21st International Conference on Nuclear Engineering, : American Society of Mechanical Engineers Digital Collection

  4. Polajžer B, Štumberger G, Ritonja J, and Dolinar D (2010) "Linearization of radial force characteristic of active magnetic bearings using finite element method and differential evolution." ed: InTech 27–40.

  5. Tsai N-C, Li H-Y, Lin C-C, Chiang C-W, Wang P-L (2011) Identification of rod dynamics under influence of active magnetic bearing. Mechatron 21(6):1013–1024

    Article  Google Scholar 

  6. Tsai N-C, Chiang C-W, Li H-Y (2009) Innovative active magnetic bearing design to reduce cost and energy consumption. Electromagn 29(5):406–420

    Article  Google Scholar 

  7. Kimman M, Langen H, Schmidt RM (2010) A miniature milling spindle with active magnetic bearings. Mechatron 20(2):224–235

    Article  Google Scholar 

  8. Spirig M, Schmied J, Jenckel P, Kanne U (2002) Three practical examples of magnetic bearing control design using a modern tool. J Eng Gas Turbines Power 124(4):1025–1031

    Article  Google Scholar 

  9. Mizuno T, Bleuler H (1995) Self-sensing magnetic bearing control system design using the geometric approach. Control Eng Pract 3(7):925–932

    Article  Google Scholar 

  10. Chiba A, Fukao T, Ichikawa O, Oshima M, Takemoto M, Dorrell DG (2005) Magnetic bearings and bearingless drives. Elsevier, Amsterdam

    Google Scholar 

  11. Qin Y, Peng H, Ruan W, Wu J, Gao J (2014) A modeling and control approach to magnetic levitation system based on state-dependent ARX model. J Process Control 24(1):93–112

    Article  Google Scholar 

  12. Schweitzer G, Maslen EH (2009) Magnetic bearings: theory, design, and application to rotating machinery. Springer, Berlin

    Google Scholar 

  13. Polajzer B (1999) "Modeling and control of horizontal-shaft magnetic bearing system." in ISIE'99. Proceedings of the IEEE International Symposium on Industrial Electronics (Cat. No. 99TH8465): IEEE, 3 1051–1055

  14. Polajžer B, Ritonja J, Štumberger G, Dolinar D, Lecointe J-P (2006) Decentralized PI/PD position control for active magnetic bearings. Electr Eng 89(1):53–59

    Article  Google Scholar 

  15. Polajžer B, Ritonja J, and Dolinar D (2010) "Impact of radial force nonlinearities on decentralized control of magnetic bearings." in The XIX International Conference on Electrical Machines-ICEM 2010: IEEE, 1–4

  16. Zhong W, Palazzolo A (2015) Magnetic bearing rotordynamic system optimization using multi-objective genetic algorithms. J Dyn Syst Meas Control 137(2): 021012. https://doi.org/10.1115/1.4028401

    Article  Google Scholar 

  17. Mushi SE, Lin Z, Allaire PE (2011) Design, construction, and modeling of a flexible rotor active magnetic bearing test rig. IEEE/ASME Trans Mechatron 17(6):1170–1182

    Article  Google Scholar 

  18. Jin C, Guo K, Xu Y, Cui H, Xu L (2019) Design of magnetic bearing control system based on active disturbance rejection theory. J Vib Acoust 141(1):011009. https://doi.org/10.1115/1.4040837

    Article  Google Scholar 

  19. Grega W, Pilat A (2005) Comparison of linear control methods for an AMB system. Int J Appl Math Comput Sci 15(2):245

    MATH  Google Scholar 

  20. Jastrzębski RP, Pöllänen R (2009) Compensation of nonlinearities in active magnetic bearings with variable force bias for zero-and reduced-bias operation. Mechatron 19(5):629–638

    Article  Google Scholar 

  21. Jastrzębski RP, Pöllänen R (2009) Centralized optimal position control for active magnetic bearings: comparison with decentralized control. Electr Eng 91(2):101–114

    Article  Google Scholar 

  22. Barbaraci G, Mariotti GV, Piscopo A (2013) Active magnetic bearing design study. J Vib Control 19(16):2491–2505

    Article  Google Scholar 

  23. Maslen E (2009) Self–sensing magnetic bearings. magnetic bearings. Springer, Berlin, pp 435–459

    Chapter  Google Scholar 

  24. Noshadi A, Shi J, Lee WS, Shi P, Kalam A (2015) System identification and robust control of multi-input multi-output active magnetic bearing systems. IEEE Trans Control Syst Technol 24(4):1227–1239

    Article  Google Scholar 

  25. Wei C, Söffker D (2015) Optimization strategy for PID-controller design of AMB rotor systems. IEEE Trans Control Syst Technol 24(3):788–803

    Article  Google Scholar 

  26. Siddiqui MR, Ahmad SM, Asghar U (2017) Stabilizing control of a 1-DOF electromagnetic levitation of pivoted-free rigid ferromagnetic beam. Meas 106:35–45

    Article  Google Scholar 

  27. Genta G (2007) Dynamics of rotating systems. Springer Science & Business Media, Berlin

    Google Scholar 

  28. Ahmad SM, Ahmed OA, Mohamed Z (2015) Vibration induced failure analysis of a high speed rotor supported by active magnetic bearings. Trans Can Soc Mech Eng 39(4):855–866

    Article  Google Scholar 

  29. Doyle J, Stein G (1981) Multivariable feedback design: Concepts for a classical/modern synthesis. IEEE Trans Autom Control 26(1):4–16

    Article  Google Scholar 

  30. Franklin GF, Powell JD, Workman ML (1998) Digital control of dynamic systems. Addison-wesley Reading, MA

    MATH  Google Scholar 

  31. Sanches T, Bousson K (2019) Linear quadratic gaussian/loop transfer recover control flight control on a nonlinear model. Int J Aerosp Mech Eng 13(9):574–581

    Google Scholar 

  32. Lavretsky E (2011) Adaptive output feedback design using asymptotic properties of LQG/LTR controllers. IEEE Trans Autom Control 57(6):1587–1591

    Article  MathSciNet  Google Scholar 

  33. Kozáková A, Hypiusová M (2015) LQG/LTR based reference tracking for a modular servo. J Electr Syst Inf Technol 2(3):347–357

    Article  Google Scholar 

  34. Naeem W, Sutton R, Ahmad S (2003) LQG/LTR control of an autonomous underwater vehicle using a hybrid guidance law. IFAC Proc Vol 36(4):31–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvat M. Ahmad.

Additional information

Technical Editor: Victor Juliano De Negri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahad, M.A., Iqbal, N., Ahmad, S.M. et al. Detailed modelling and LQG\LTR control of a 2-DOF radial active magnetic bearing for rigid rotor. J Braz. Soc. Mech. Sci. Eng. 43, 234 (2021). https://doi.org/10.1007/s40430-021-02951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02951-4

Keywords

Navigation