Skip to main content

Self–Sensing Magnetic Bearings

  • Chapter
  • First Online:
Magnetic Bearings

Self–sensing approaches permit active magnetic bearings to dispense with the usual position sensor and, instead, extract rotor position information from the voltage and current histories for the electromagnet coils. Mirroring the development of back–emf sensing of angular position in brushless DC motors, this technology has begun to be applied to commercial products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bleuler and D. Vischer. Magnetic bearing systems with minimal hardware requirement. In ROMAG ’91: Magnetic Bearings and Dry Gas Seals International Conference and Exhibition, March 1991.

    Google Scholar 

  2. Hannes Bleuler. Survey of magnetic levitation and magnetic bearing types. JSME International Journal, Series 3: Vibration, Control Engineering, Engineering for Industry, 35(3):335 – 342, 1992.

    Google Scholar 

  3. N. N. Bogoliubov and Y. A. Mitropolsky. Asymptotic Methods in the Theory of Non-Linear Oscillations. Hindustan Publishing Corporation (India), 1961.

    Google Scholar 

  4. Maurice Brunet and Bruno Wagner. Innovation: Self-sensing technology, simplified mechanical design. In S2M News, 5, December 2005.

    Google Scholar 

  5. Guang-Ren Duan, Zhan-Yuan Wu, and D. Howe. Explicit parametric solution to observer-based control of self-sensing magnetic bearings. Proceedings of the 14th World Congress. International Federation of Automatic Control, vol.16:379 – 84, 1999.

    Google Scholar 

  6. Z. Gosiewski. Control design of sensorless magnetic bearings for rigid rotor. In Proceedings of the Sixth International Symposium on Magnetic Bearings, pages 548–557, 1998.

    Google Scholar 

  7. R. Gurumoorthy, W. L. Soong, J. P. Lyons, and A. F. Storace. Implementation of sensorless control of radial magnetic bearings. In Proceedings of MAG ’95 Magnetic Bearings, Magnetic Drives and Dry Gas Seals, Washington, D.C., August 1995.

    Google Scholar 

  8. V. Iannello. Sensorless position detector for an active magnetic bearing. U.S. Patent No. 5,696,412.

    Google Scholar 

  9. Hiroaki Ito, Mimpei Morishita, Yoshiaki Fujita, Akira Yamamoto, and Kazuo Shimane. Development of elevator car non-contact guide system. In Proceedings of ELEVCON 2006, 2006.

    Google Scholar 

  10. P. T. Kabamba, S. M. Meerkov, and E K. Poh. Pole placement capabilities of vibrational control. IEEE Transactions on Automatic Control, 43(9):1256–1261, September 1998.

    Article  MATH  MathSciNet  Google Scholar 

  11. Mochimitsu Komori and Chaki Shiraishi. A levitated motor with superconducting magnetic bearings assisted by self-sensing ambs. IEEE Transactions on Applied Superconductivity, 13(2):2189–2192, June 2003.

    Article  Google Scholar 

  12. L. Kucera. Robustness of self-sensing magnetic bearing. In Proceedings of MAG’97 Industrial Conference and Exhibition on Magnetic Bearings, pages 261–270, Alexandria, Virginia, August 1997.

    Google Scholar 

  13. Ladislav Kucera. Method and device for regulating a sensor-free magnetic bearing, January 1998. International Patent Application No. PCT/CH1998/000014, Designee: Eidgenössische Technische Hochshule ETH-Zentrum.

    Google Scholar 

  14. T. Kurosu, K-I. Matsuda, and Y. Okada. Self-sensing control technique of self-bearing motor. In Proceedings of the Eighth International Symposium on Magnetic Bearings, pages 293–297, August 2002.

    Google Scholar 

  15. Tomonori Kuwajima, Tetsuya Nobe, Kenji Ebara, Akira Chiba, and Tadashi Fukao. An estimation of the rotor displacements of bearingless motors based on a high frequency equivalent circuit. In Proceedings of the International Conference on Power Electronics and Drive Systems, volume 2, pages 725–731, 2001.

    Google Scholar 

  16. S. Lee and S. M. Meerkov. Generalized dither. International Journal of Control, 53(3):741–747, 1991.

    Article  Google Scholar 

  17. Lichuan Li, Tadahiko Shinshi, and Akira Shimokohbe. State feedback control for active magnetic bearings based on current change rate alone. IEEE Transactions on Magnetics, 40(6):3512–3517, November 2004.

    Article  Google Scholar 

  18. J. P. Lyons, S. R. MacMinn, and M. A. Preston. Flux/current methods for SRM rotor position estimation. In Proc. 1991 IEEE Industry Application Society Annual Meeting, 1991.

    Google Scholar 

  19. Roza Mahmoodian. Formal parameter estimation for self-sensing magnetic bearings. Master of Science Thesis, University of Virginia, January 2007.

    Google Scholar 

  20. E.H. Maslen, D.T. Montie, and T. Iwasaki. Robustness limitations in self–sensing magnetic bearings. ASME Journal of Dynamic Systems, Measurement, and Control, 128(2):197–203, 2006.

    Article  Google Scholar 

  21. Eric Maslen, Tetsuya Iwasaki, and Roza Mahmoodian. Self-sensing magnetic bearings: development of a virtual probe. In Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference, St. Louis, Missouri, July 2006.

    Google Scholar 

  22. Ken-ichi Matsuda, Yohji Okada, and Junji Tani. Self-sensing magnetic bearing using the differential transformer principle. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 63(609):1441 – 1447, 1997.

    Google Scholar 

  23. F. Matsumura, Y. Okada, M. Fujita, and T. Namerikawa. State of the art of magnetic bearings. JSME International Journal, 40(4):553–560, 1997.

    Google Scholar 

  24. David C. Meeker, Eric H. Maslen, and Myounggyu D. Noh. Augmented circuit model for magnetic bearings including eddy currents, fringing, and leakage. IEEE Transactions on Magnetics, 32(4 pt 2):3219 – 3227, 1996.

    Google Scholar 

  25. Mimpei Morishita and Hiroaki Ito. The self-gap-detecting electromagnetic suspension system with robust stability against variation of levitation mass. In Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Taorima, Italy, May 2006.

    Google Scholar 

  26. T. Mizuno. Phase–locked loops for the stabilization of active magnetic suspensions. JSME International Journal Series C, 37(3):499–503, 1994.

    MathSciNet  Google Scholar 

  27. T. Mizuno, K. Araki, and H. Bleuler. Stability analysis of self–sensing magnetic bearing controllers. IEEE Transactions on Control Systems Technology, 4(5):572–579, September 1996.

    Article  Google Scholar 

  28. T. Mizuno and H. Bleuler. A geometric approach to control system design of self-sensing magnetic bearings. Automatic Control. World Congress 1993. Proceedings of the 12th Triennial World Congress of the International Federation of Automatic Control. Vol.3. Applications I, pages 465 – 70, 1994.

    Google Scholar 

  29. T. Mizuno and H. Bleuler. Self–sensing magnetic bearing control system design using the geometric approach. Control Engineering Practice, 3(7):925–932, July 1995.

    Article  Google Scholar 

  30. T. Mizuno, H. Bleuler, C. Gähler, and D. Vischer. Towards practical applications of self-sensing magnetic bearings. In Proceedings of the Third International Symposium on Magnetic Bearings, 1992.

    Google Scholar 

  31. T. Mizuno, H. Bleuler, H. Tanaka, K. Komatsu, H. Ueyama, H. Hashimoto, and L. Kucera. An industrial application of sensorless magnetic bearings. In Proceedings of the Fourth International Symposium on Magnetic Bearings, ETH Zurich, August 1994.

    Google Scholar 

  32. T. Mizuno and Y. Hirasawa. Self-sensing magnetic suspension using a hysteresis amplifier with a two-quadrant drive. In Proceedings of the Sixth International Symposium on Magnetic Suspension Technology, pages 76–80, October 2001.

    Google Scholar 

  33. T. Mizuno, T. Ishii, and K. Araki. Realization of phase–locked and frequency–feedback magnetic bearings. In Proceedings of the Fourth International Symposium on Magnetic Bearings, ETH Zurich, August 1994.

    Google Scholar 

  34. T. Mizuno, H. Namiki, and K. Araki. Self–sensing operations of frequency-feedback magnetic bearings. In Proceedings of the Fifth International Symposium on Magnetic Bearings, pages 119–123, August 1996.

    Google Scholar 

  35. T. Mizuno, H. Nimiki, and K. Araki. Counter-interfaced digital control of self-sensing magnetic suspension systems with hysteresis amplifiers. JSME International Journal Series C - Mechanical Systems, Machine Elements and Manufacturing, 42(1):71–78, March 1999.

    Google Scholar 

  36. Takeshi Mizuno, Kenji Araki, and Hannes Bleuler. On the stability of controllers for self-sensing magnetic bearings. Proceedings of the SICE Annual Conference, pages 1599 – 1604, 1995.

    Google Scholar 

  37. Takeshi Mizuno, Hannes Bleuler, Hiroaki Tanaka, Hideki Hashimoto, Fumio Harashima, and Hirochika Ueyama. An industrial application of position sensorless active magnetic bearings. Transactions of the Institute of Electrical Engineering of Japan, 117(5):124–133, November 1996.

    Google Scholar 

  38. Abdelfatah M. Mohamed, Fumio Matsumura, Toru Namerikawa, and Jun-Ho Lee. Modeling and robust control of self-sensing magnetic bearings with unbalance compensation. IEEE Conference on Control Applications - Proceedings, pages 586 – 594, 1997.

    Google Scholar 

  39. D. T. Montie. Performance Limitations and Self–Sensing Magnetic Bearings. PhD thesis, University of Virginia, 2003.

    Google Scholar 

  40. D. T. Montie and E. H. Maslen. Experimental self–sensing results for a magnetic bearing. In Proceedings of the ASME International Gas Turbine Institute Turbo Expo, June 2001.

    Google Scholar 

  41. D. T. Montie and E. H. Maslen. Self–sensing in fault tolerant magnetic bearings. ASME Journal of Engineering for Gas Turbines and Power, 123:864–870, October 2001.

    Article  Google Scholar 

  42. N. Morse, R. Smith, B. Paden, and J. Antaki. Position sensed and self–sensing magnetic bearing configurations and associated robustness limitations. In Proceedings of the IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes, volume 3, pages 2599–2604, 1998.

    Google Scholar 

  43. R. Mueller et al. Position sensorless AMB in four degrees of freedom. In Proceedings of the Fifth International Symposium on Magnetic Bearings, pages 101–106, August 1996.

    Google Scholar 

  44. M. D. Noh. Self–Sensing Magnetic Bearings Driven by a Switching Power Amplifier. PhD thesis, University of Virgina, 1996.

    Google Scholar 

  45. M. D. Noh and E. H. Maslen. Self–sensing magnetic bearings (Part II). In Proceedings of the Fifth International Symposium on Magnetic Bearings, pages 113–118, August 1996.

    Google Scholar 

  46. M. D. Noh and E. H. Maslen. Self–sensing magnetic bearings using parameter estimation. IEEE Transactions on Instrumentation and Measurement, 46(1):45–50, February 1997.

    Article  Google Scholar 

  47. K. Ohnishi, N. Matsui, and Y. Hori. Estimation, identification, and sensorless control in motion control-system. Proceedings of the IEEE, 82(8):1253–1256, 1994.

    Google Scholar 

  48. Y. Okada, K. Matsuda, and B. Nagai. Sensorless magnetic levitation control by measuring the PWM carrier frequency component. In Proceedings of the Third International Symposium on Magnetic Bearings, 1992.

    Google Scholar 

  49. Yohji Okada and Kenzou Nonami. Research trends on magnetic bearings (overview of the 8th international symposium on magnetic bearings, ismb8). JSME International Journal, 46(2):341–342, 2003.

    Article  Google Scholar 

  50. K. S. Peterson, R. H. Middleton, and J. S. Freudenberg. Fundamental limitations in self-sensing magnetic bearings when modeled as linear periodic systems. In Proceedings of the American Controls Conference, 2006.

    Google Scholar 

  51. A. Schammass and H. Bleuler. Experimental results on self–sensing AMB using a three-state PWM amplifier. In Proceedings of the Eighth International Symposium on Magnetic Bearings, pages 289–292, August 2002.

    Google Scholar 

  52. Alexandre Schammass. A Self–sensing Active Magnetic Bearing: Modulation Approach. PhD thesis, Swiss Federal Institute of Technology Lausanne - EPFL, 2003.

    Google Scholar 

  53. Alexandre Schammass, Raoul Herzog, Philipp Bühler, and Hannes Bleuler. New results for self-sensing active magnetic bearings using modulation approach. IEEE Transactions on Control Systems Technology, 13(4):509–516, July 2005.

    Article  Google Scholar 

  54. K. K. Sivadasan. Analysis of self–sensing active magnetic bearings working on inductance measurement principle. IEEE Transactions on Magnetics, 32(2), March 1996.

    Google Scholar 

  55. N. Skricka and R. Markert. Compensation of disturbances on self–sensing magnetic bearings caused by saturation and coordinate coupling. In Proceedings of the Seventh International Symposium on Magnetic Bearings, pages 165–170, August 2000.

    Google Scholar 

  56. N. Skricka and R. Markert. Influence of cross-axis sensitivity and coordinate coupling on self–sensing. In Proceedings of the Sixth International Symposium on Magnetic Suspension Technology, pages 179–184, October 2001.

    Google Scholar 

  57. Gang Tao. Adaptive Control Design and Analysis. Wiley-IEEE Press, 2003.

    Google Scholar 

  58. N. M. Thibeault and R. Smith. Robustness comparison of a magnetic bearing system in various measurement configurations. In Proceedings of the American Control Conference, volume 5, pages 3002–3003, IEEE, Piscataway, NJ, USA, 2000.

    Google Scholar 

  59. Yann Tremaudant, Maurice Brunet, and Ulrich Schroeder. Active magnetic bearing with automatic detection of the position thereof, March 2005. International Patent, Application No: PCT/FR2005/000626, Designee: Societe de Mecanique Magnetique.

    Google Scholar 

  60. Perry Tsao, Seth R. Sanders, and Gabriel Risk. Self-sensing homopolar magnetic bearing: Analysis and experimental results. In Proceedings of the 1999 IEEE Industry Applications Conference - 34th IAS Annual Meeting, pages 2560–2565, 1999.

    Google Scholar 

  61. S. Ueno et al. Position self–sensing control of an axial self-bearing motor. In Proceedings of the Eighth International Symposium on Magnetic Bearings, pages 299–304, August 2002.

    Google Scholar 

  62. V. M. G. van Acht, A. A. H. Damen, and P. P. J. van den Bosch. On self–sensing magnetic levitated systems. In Proceedings of the Sixth International Symposium on Magnetic Bearings, pages 538–547, August 1998.

    Google Scholar 

  63. D. Vischer and H. Bleuler. A new approach to sensorless and voltage controlled AMB s based on network theory concepts. In Proceedings of the Second International Symposium on Magnetic Bearings, pages 301–306, Tokyo, Japan, July 1990.

    Google Scholar 

  64. D. Vischer and H. Bleuler. Self–sensing active magnetic levitation. IEEE Transactions on Magnetics, 29(2):1276–1281, March 1993.

    Article  Google Scholar 

  65. Jing Yang, Qinxiang He, and Huarong Zhang. Self-sensing position sensor of magnetic bearings. Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 23(2):114 –, 2003.

    Google Scholar 

  66. T. Yoshida, Y. Kuroba, K. Ohniwa, and O. Miyashita. Self-sensing active magnetic bearings using a new PWM equipped with a bias voltage source. European Power Electronics and Drives Journal, 15(2):19 – 24, April 2005.

    Google Scholar 

  67. T. Yoshida and K. Ohniwa. A PWM amplifier for self-sensing active magnetic bearings with low-sensitivity to cable length. Transactions of the Institute of Electrical Engineers of Japan, Part D, 123-D(10):1206 – 12, October 2003.

    Google Scholar 

  68. K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, Inc., 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Maslen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maslen, E. (2009). Self–Sensing Magnetic Bearings. In: Maslen, E., Schweitzer, G. (eds) Magnetic Bearings. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00497-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00497-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00496-4

  • Online ISBN: 978-3-642-00497-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics