Skip to main content
Log in

Thrust enhancement of a flapping airfoil using a non-sinusoidal motion trajectories

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A parametric numerical study is conducted to assess the effect of trajectory nature on the propulsive performances of a NACA0014 flapping airfoil. Sinusoidal and non-sinusoidal plunging and pitching trajectories are combined to achieve sought flapping trajectories. To this aim, the effect of kinematic parameters such as oscillation frequency, plunging amplitude, pitching amplitude, and phase angle between pitch and plunge is evaluated on thrust and propulsive efficiency behavior at a low Reynolds number, \(Re=1.1\)x\( 10^4\). It is found that the best propulsive efficiency is obtained for sinusoidal paths, while non-sinusoidal ones are found to slightly improve thrust and lift forces. Furthermore, thrust coefficient maximum values are obtained for non-sinusoidal trajectories when flatness coefficients \(S>1\). The highest lift coefficient values are found however for flapping trajectories when flatness coefficients \(S<1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Anderson JM, Streitlien K, Barrett DS, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72

    Article  MathSciNet  Google Scholar 

  2. Ashraf MA, Young J, Lai JCS (2011) Reynolds number, thickness and camber effects on flapping airfoil propulsion. J Fluids Struct 27:45–160

    Article  Google Scholar 

  3. Benkherouf T, Mekadem M, Oualli H, Hanchi S, Keirsbulck L, Labraga L (2011) Efficiency of an auto-propelled flapping airfoil. J Fluids Struct 27:552–566

    Article  Google Scholar 

  4. Flemming F, Williamson CHK (2005) Vortex-induced vibrations of a pivoted cylinder. J Fluid Mech 522:215–252

    Article  Google Scholar 

  5. Garrick IE (1936) Propulsion of a flapping and oscillating airfoil. NACA Report 567

  6. Govardhan R, Williamson CHK (2001) Mean and fluctuating velocity fields in the wake of a freely-vibrating cylinder. J Fluids Struct 15:489–501

    Article  Google Scholar 

  7. Hanchi S, Benkherouf T, Mekadem M, Oualli H, Keirsbulck L, Labraga L (2013) Wake structure and aerodynamic characteristics of an auto-propelled pitching airfoil. J Fluids Struct 39:275–291

    Article  Google Scholar 

  8. Heathcote S, Wang Z, Gursul I (2008) Effect of spanwise flexibility on flapping wing propulsion. J Fluids Struct 24:183–199

    Article  Google Scholar 

  9. Ho S, Nassef H, Pornsinsirirak N, Tai Y-Ch, Ho ChM (2003) Unsteady aerodynamics and flow control for flapping wing flyers. Prog Aerosp Sci 39:635–681

    Article  Google Scholar 

  10. Isogai K, Shinmoto Y, Watanabe Y (1999) Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil. AIAA J 37:1145–1151

    Article  Google Scholar 

  11. Jones KD, Platzer MF (1997) Numerical computation of flapping wing propulsion and power extraction. AIAA Paper 1997-0826, Reno, Nevada, USA

  12. Kaya M, Tuncer IH (2007) Non-sinusoidal path optimization of a flapping airfoil. AIAA J 45(8):2075–2082

    Article  Google Scholar 

  13. Kaya M, Uncer IH (2008) Path optimization of thrust producing flapping airfoils using response surface methodology. In: 5th European Congress on Computational Methods in Applied Sciences and Engendering (ECCOMAS 2008), Venice, Italy

  14. Kinsey T, Dumas G (2008) Parametric study of oscillating airfoils in power extraction regime. AIAA J 46(6):1318–1330

    Article  Google Scholar 

  15. Koochesfahani MM (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27:1200–1205

    Article  Google Scholar 

  16. Lu K, Xie YH, Zhang D (2013) Numerical study of large amplitude, nonsinusoidal motion and camber effects on pitching airfoil propulsion. J Fluids Struct 36:184–194

    Article  Google Scholar 

  17. Lewin GC, Haj-hariri H (2013) Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. J Fluid Mech 492:339-362

  18. Martin-Alcantara A, Fernandez-Feria R, Sanmiguel-Rojas E (2015) Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack. Phys Fluids 27:073602

    Article  Google Scholar 

  19. Mackowski AW, Williamson CHK (2015) Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching. J Fluid Mech 765:524–543

  20. Meilin Y , Wang ZJ , Hu H (2013) High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion. J Fluids Struct 42:166–186

  21. Mekadem M, Chettibi T, Hanchi S, Keirsbulck L, Labraga L (2012) Kinematic optimization of 2D plunging airfoil motion using the response surface methodology. J Zhejiang Univ Sci A 13(2): 105–120

  22. Morse TL, Williamson CHK (2009) Fluid forcing, wake modes, and transitions for a cylinder undergoing controlled oscillations. J Fluids Struct 25:697–712

    Article  Google Scholar 

  23. Platzer MF, Ashraf MA, Young J, Lai JCS (2009) Development of a new oscillating-wing wind and hydropower generator. In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida (2009)

  24. Ramamurti R, Sandberg W (2001) Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA J 39:253–260

    Article  Google Scholar 

  25. Read DA, Hover FS, Triantafyllou MS (2003) Forces on oscillating foils for propulsion and maneuvering. J Fluids Struct 17:163–183

    Article  Google Scholar 

  26. Rival D, Prangemeier T, Tropea C (2009) The influence of airfoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp Fluids 46:823–833

    Article  Google Scholar 

  27. Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208

    Article  Google Scholar 

  28. Shyy W, Berg M, Ljungqvist D (1999) Flapping and flexible wings for biological and micro air vehicles. Prog Aerosp Sci 35:455–505

    Article  Google Scholar 

  29. Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang C-K, Cesnik CES, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46:284–327

    Article  Google Scholar 

  30. Soueid H, Guglielmini L, Airiau C, Bottaro A (2009) Optimization of the motion of a flapping airfoil using sensitivity functions. Comput Fluids 38:861–874

    Article  Google Scholar 

  31. Triantafyllou GS, Triantafyllou MS, Grosenbaugh MA (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7:205–224

    Article  Google Scholar 

  32. Van Leer B (1979) Toward the ultimate conservative difference scheme. IV. A second order sequel to Godunov’s method. J Comput Physi 32: 101–136

  33. Williamson CHK, Roshko A (1988) Vortex formation in the wake of an oscillating cylinder. J Exp Biol 2:355–381

    Google Scholar 

  34. Wu JH, Sun M (2001) The influence of the wake of a flapping wing on the production of aerodynamic forces. Acta Mech Sinica 21:411–418

    Article  Google Scholar 

  35. Xiao Q, Wei L, Shuchi Y, Yan P (2012) How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil. Renew Energy 37:61–75

    Article  Google Scholar 

  36. Young J, Lai JCS (2004) oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J 42:2042–2052

    Article  Google Scholar 

  37. Young J, Lai JCS (2007) Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J 47:1695–1702

    Article  Google Scholar 

  38. Zhang X, Zhou Ch (2011) Numerical investigation on the aerodynamic characteristics of a forward flight flapping airfoil with nonsymmetrical plunging motion. Inform Technol J 10(4):748–758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mekadem.

Additional information

Technical Editor: André Cavalieri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekadem, M., Chettibi, T., Oualli, H. et al. Thrust enhancement of a flapping airfoil using a non-sinusoidal motion trajectories. J Braz. Soc. Mech. Sci. Eng. 43, 201 (2021). https://doi.org/10.1007/s40430-021-02923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02923-8

Keywords

Navigation