Skip to main content
Log in

Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Magnetorheological elastomers (MRE) are composite materials, comprised of a viscoelastic matrix with ferromagnetic particles added to it, which enables variation in the dynamic properties through applied magnetic fields. The present work aims to experimentally identify the effects of frequency, temperature, and magnetic field on such properties. In the frequency domain, transmissibility tests of a single-degree-of-freedom system were performed, varying the applied magnetic field and temperature. An inverse optimization problem was used to fit the experimental transmissibility curves with an analytical model for the MRE. Thus, it was possible to obtain the parameters of the material that best describe the experimental data. Experimental results showed that MRE significantly increases the system stiffness, especially at higher temperatures. The comparison between experimental and analytical curves validated the mathematical model with R2 values above 0.96. A component of variation analysis showed that a variation in temperature has the most relevant effect on the MRE dynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Jolly MR, Carlson JD, Muñoz BC, Bullions TA (1996) The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J Intell Mater Syst Struct 7:613–622. https://doi.org/10.1177/1045389X9600700601

    Article  Google Scholar 

  2. Li Y, Li J, Li W, Du H (2014) A state-of-the-art review on magnetorheological elastomer devices. Smart Mater Struct 23:123001. https://doi.org/10.1088/0964-1726/23/12/123001

    Article  Google Scholar 

  3. Kallio M (2005) The elastic and damping properties of magnetorheological elastomers. Tampere University of Technology, Tampere

    Google Scholar 

  4. Rabinow J (1948) The magnetic fluid clutch. Trans Am Inst Electr Eng 67:1308–1315. https://doi.org/10.1109/T-AIEE.1948.5059821

    Article  Google Scholar 

  5. Chen L, Gong XL, Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test 27:340–345. https://doi.org/10.1016/j.polymertesting.2007.12.003

    Article  Google Scholar 

  6. Nayak B, Dwivedy SK, Murthy KSRK (2015) Fabrication and characterization of magnetorheological elastomer with carbon black. J Intell Mater Syst Struct 26:830–839. https://doi.org/10.1177/1045389X14535011

    Article  Google Scholar 

  7. Li R, Sun LZ (2014) Dynamic viscoelastic behavior of multiwalled carbon nanotube-reinforced magnetorheological (MR) nanocomposites. J Nanomech Micromech 4:A4013014. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000065

    Article  Google Scholar 

  8. Khimi SR, Pickering KL, Mace BR (2015) Dynamic properties of magnetorheological elastomers based on iron sand and natural rubber. J Appl Polym Sci 132:5–10. https://doi.org/10.1002/app.41506

    Article  Google Scholar 

  9. Dutt JK, Nakra BC (1992) Stability of rotor systems with viscoelastic supports. J Sound Vib 153:89–96. https://doi.org/10.1016/0022-460X(92)90629-C

    Article  MATH  Google Scholar 

  10. de Espíndola JJ, Bavastri CA, Lopes EMO (2008) Design of optimum systems of viscoelastic vibration absorbers for a given material based on the fractional calculus model. J Vib Control 14:1607–1630. https://doi.org/10.1177/1077546308087400

    Article  MathSciNet  MATH  Google Scholar 

  11. Ribeiro EA, Pereira JT, Bavastri CA (2015) Passive vibration control in rotor dynamics: optimization of composed support using viscoelastic materials. J Sound Vib 351:43–56. https://doi.org/10.1016/j.jsv.2015.04.007

    Article  Google Scholar 

  12. Bronkhorst KB, Febbo M, Lopes EMO, Bavastri CA (2018) Experimental implementation of an optimum viscoelastic vibration absorber for cubic nonlinear systems. Eng Struct 163:323–331. https://doi.org/10.1016/j.engstruct.2018.02.074

    Article  Google Scholar 

  13. Ginder JM, Schlotter WF, Nichols ME (2001) Magnetorheological elastomers in tunable vibration absorbers. Smart Struct Mater Damp Isol 4331:103–110. https://doi.org/10.1117/12.432694

    Article  Google Scholar 

  14. Kallio M, Lindroos T, Aalto S et al (2007) Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer. Smart Mater Struct 16:506–514. https://doi.org/10.1088/0964-1726/16/2/032

    Article  Google Scholar 

  15. Deng HX, Gong XL (2007) Adaptive tuned vibration absorber based on magnetorheological elastomer. J Intell Mater Syst Struct 18:1205–1210. https://doi.org/10.1177/1045389X07083128

    Article  Google Scholar 

  16. Ni ZCC, Gong XLL, Li JFF, Chen L (2009) Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastomer. J Intell Mater Syst Struct 20:1195–1202. https://doi.org/10.1177/1045389X09104790

    Article  Google Scholar 

  17. Sinko R, Karnes M, Koo JH et al (2013) Design and test of an adaptive vibration absorber based on magnetorheological elastomers and a hybrid electromagnet. J Intell Mater Syst Struct 24:803–812. https://doi.org/10.1177/1045389X12463461

    Article  Google Scholar 

  18. Gu X, Yu Y, Li J, Li Y (2017) Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model. J Sound Vib 406:346–362. https://doi.org/10.1016/j.jsv.2017.06.023

    Article  Google Scholar 

  19. Kumbhar SB, Chavan SP, Gawade SS (2018) Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mech Syst Signal Process 100:208–223. https://doi.org/10.1016/j.ymssp.2017.07.027

    Article  Google Scholar 

  20. Hoang N, Zhang N, Du H (2011) An adaptive tunable vibration absorber using a new magnetorheological elastomer for vehicular powertrain transient vibration reduction. Smart Mater Struct 20:015019. https://doi.org/10.1088/0964-1726/20/1/015019

    Article  Google Scholar 

  21. Hoang N, Zhang N, Li WH, Du H (2013) Development of a torsional dynamic absorber using a magnetorheological elastomer for vibration reduction of a powertrain test rig. J Intell Mater Syst Struct 24:2036–2044. https://doi.org/10.1177/1045389X13489361

    Article  Google Scholar 

  22. Gross B (1947) On creep and relaxation. II. J Appl Phys 19:212–221. https://doi.org/10.1063/1.1715055

    Article  MathSciNet  Google Scholar 

  23. Caputo M (1967) Linear models of dissipation whose Q is almost frequency independent. Geophys J Int 13:529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x

    Article  Google Scholar 

  24. Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. La Riv Nuovo Cim 1:161–198. https://doi.org/10.1007/BF02820620

    Article  Google Scholar 

  25. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  26. Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping, 1st edn. Wiley-Interscience, New York

    Google Scholar 

  27. Jones DIG (2001) Handbook of viscoelastic vibration damping, 1st edn. Wiley, Chichester

    Google Scholar 

  28. Guo F, Du C, Li R (2014) Viscoelastic parameter model of magnetorheological elastomers based on abel dashpot. Adv Mech Eng 6:629386. https://doi.org/10.1155/2014/629386

    Article  Google Scholar 

  29. Wan Y, Xiong Y, Zhang S (2018) Temperature dependent dynamic mechanical properties of magnetorheological elastomers: experiment and modeling. Compos Struct 202:768–773. https://doi.org/10.1016/j.compstruct.2018.04.010

    Article  Google Scholar 

  30. Norouzi M, Sajjadi Alehashem SM, Vatandoost H et al (2016) A new approach for modeling of magnetorheological elastomers. J Intell Mater Syst Struct 27:1121–1135. https://doi.org/10.1177/1045389X15615966

    Article  Google Scholar 

  31. Vatandoost H, Norouzi M, Alehashem SMS, Smoukov SK (2017) A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension–compression mode. Smart Mater Struct 26:065011. https://doi.org/10.1088/1361-665X/aa6126

    Article  Google Scholar 

  32. ASTM Standard (2005) E756 − 05 (Reapproved 2017)—Standard test method for measuring vibration-damping properties of materials

  33. ASTM Standard (2011) D 5992 – 96—Standard guide for dynamic testing of vulcanized rubber and rubber-like materials using vibratory methods

  34. Lopes EM de O, Bavastri CA, Silva Neto JM da, Espíndola JJ de (2004) caracterização dinâmica integrada de elastômeros por derivadas generalizadas. In: III Congresso nacional de engenharia mecânica—CONEM. p 13

  35. de Espíndola JJ, da Silva Neto JM, Lopes EMO (2005) A generalised fractional derivative approach to viscoelastic material properties measurement. Appl Math Comput 164:493–506. https://doi.org/10.1016/j.amc.2004.06.099

    Article  MATH  Google Scholar 

  36. de Medeiros Júnior WB, Préve CT, Balbino FO et al (2019) On an integrated dynamic characterization of viscoelastic materials by fractional derivative and GHM models. Lat Am J Solids Struct 16:1–19. https://doi.org/10.1590/1679-78254983

    Article  Google Scholar 

  37. Gong XL, Zhang XZ, Zhang PQ (2005) Study of mechanical behavior and microstructure of magnetorheological elastomers. Int J Mod Phys B 19:1304–1310. https://doi.org/10.1142/S0217979205030220

    Article  Google Scholar 

  38. Hashi HA, Muthalif AGA, Diyana Nordin NH (2016) Dynamic tuning of torsional transmissibility using magnetorheological elastomer: modelling and experimental verification. Iran J Sci Technol Trans Mech Eng 40:181–187. https://doi.org/10.1007/s40997-016-0024-6

    Article  Google Scholar 

  39. Spasojević D, Irvine TF, Afgan N (1974) The effect of a magnetic field on the rheodynamic behavior of ferromagnetic suspensions. Int J Multiph Flow 1:607–622. https://doi.org/10.1016/0301-9322(74)90021-4

    Article  Google Scholar 

  40. Davis LC (1999) Model of magnetorheological elastomers. J Appl Phys 85:3348–3351. https://doi.org/10.1063/1.369682

    Article  Google Scholar 

  41. Agirre-Olabide I, Elejabarrieta M, Lion A (2015) Fractional derivative model for magnetorheological elastomers. In: Constitutive models for rubbers IX. CRC Press, pp 639–645

  42. Agirre-Olabide I, Kuzhir P, Elejabarrieta MJ (2018) Linear magneto-viscoelastic model based on magnetic permeability components for anisotropic magnetorheological elastomers. J Magn Magn Mater 446:155–161. https://doi.org/10.1016/j.jmmm.2017.09.017

    Article  Google Scholar 

  43. Chooi WW, Oyadiji SO (2005) Characterizing the effect of temperature and magnetic field strengths on the complex shear modulus properties of magnetorheological (MR) fluids. Int J Mod Phys B 19:1318–1324. https://doi.org/10.1142/S0217979205030244

    Article  Google Scholar 

  44. Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol (N Y) 30:133–155. https://doi.org/10.1122/1.549887

    Article  MATH  Google Scholar 

  45. Pritz T (1996) Analysis of four-parameter fractional derivative model of real solid materials. J Sound Vib 195:103–115. https://doi.org/10.1006/jsvi.1996.0406

    Article  MATH  Google Scholar 

  46. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol (N Y) 27:201. https://doi.org/10.1122/1.549724

    Article  MATH  Google Scholar 

  47. Alfrey T (1944) Non-homogeneous stresses in visco-elastic media. Q Appl Math 2:113–119. https://doi.org/10.1090/qam/10499

    Article  MathSciNet  MATH  Google Scholar 

  48. Schwarzl F, Staverman AJ (1952) Time-temperature dependence of linear viscoelastic behavior. J Appl Phys 23:838–843. https://doi.org/10.1063/1.1702316

    Article  MATH  Google Scholar 

  49. Olienick Filho EG, Lopes EMO, Bavastri CA (2019) Integrated dynamic characterization of thermorheologically simple viscoelastic materials accounting for frequency, temperature, and preload effects. Materials (Basel) 12:1962. https://doi.org/10.3390/ma12121962

    Article  Google Scholar 

  50. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707. https://doi.org/10.1021/ja01619a008

    Article  Google Scholar 

  51. Shen Y, Golnaraghi MF, Heppler GR (2004) Experimental research and modeling of magnetorheological elastomers. J Intell Mater Syst Struct 15:27–35. https://doi.org/10.1177/1045389X04039264

    Article  Google Scholar 

  52. Rosensweig RE (1985) Ferrohydrodynamics, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  53. Furst EM, Gast AP (2000) Micromechanics of magnetorheological suspensions. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 61:6732–6739. https://doi.org/10.1103/PhysRevE.61.6732

    Article  Google Scholar 

  54. Deng H, Gong X, Wang L (2006) Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater Struct 15:N111–N116. https://doi.org/10.1088/0964-1726/15/5/N02

    Article  Google Scholar 

  55. Inman DJ (2014) Engineering vibration, 4th edn. Pearson, New Jersey

    Google Scholar 

  56. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  57. Mandal D, Chatterjee A, Bhattacharjee AK (2013) Design of fully digital controlled shaped beam synthesis using differential evolution algorithm. Int J Antennas Propag 2013:1–9. https://doi.org/10.1155/2013/713680

    Article  Google Scholar 

  58. Price K, Storn R, Lampinen JA (2005) differential evolution: a practical approach to global optimization. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  59. Onwubolu GC, Babu BV (2004) New optimization techniques in engineering. Springer, Berlin Heidelberg

    Book  Google Scholar 

  60. Zaharie D (2002) Critical values for the control parameters of differential evolution algorithms. In: Proceedings of MENDEL 2002—8th international conference on soft computing. Brno, Czech Republic, pp 62–67

  61. Storn R (2002) On the usage of differential evolution for function optimization. In: Proceedings of North American fuzzy information processing. IEEE, pp 519–523

  62. Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study for differential evolution. In: WSEAS—international conference on advances in intelligent systems, fuzzy systems, evolutionary computation. pp 293–298

  63. Venter GS, Beck AT, da Silva MM (2016) A simple hierarchical procedure for parameter identification in robust topology optimization. J Braz Soc Mech Sci Eng 38:679–689. https://doi.org/10.1007/s40430-014-0271-7

    Article  Google Scholar 

  64. Prajapati DR, Mahapatra PB (2007) An effective joint X-bar and R chart to monitor the process mean and variance. Int J Prod Qual Manag 2:459–471. https://doi.org/10.1504/IJPQM.2007.013339

    Article  Google Scholar 

  65. Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850. https://doi.org/10.1118/1.597854

    Article  Google Scholar 

  66. Abramchuk S, Kramarenko E, Stepanov G et al (2007) Novel highly elastic magnetic materials for dampers and seals: Part I. Preparation and characterization of the elastic materials. Polym Adv Technol 18:883–890. https://doi.org/10.1002/pat.924

    Article  Google Scholar 

  67. Sorokin VV, Ecker E, Stepanov GV et al (2014) Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter 10:8765–8776. https://doi.org/10.1039/C4SM01738B

    Article  Google Scholar 

  68. Ubaidillah SJ, Purwanto A, Mazlan SA (2015) Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv Eng Mater 17:563–597. https://doi.org/10.1002/adem.201400258

    Article  Google Scholar 

  69. Anderson-Sprecher R (1994) Model comparisons and R2. Am Stat 48:113. https://doi.org/10.2307/2684259

    Article  Google Scholar 

Download references

Acknowledgements

Thiago Silva acknowledges the financial support from CAPES. Carlos Alberto Bavastri acknowledges the financial support from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago da Silva.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflict of interest regarding research, authorship, and/or publication of this article.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, T., Venter, G.S. & Bavastri, C.A. Magnetorheological elastomer dynamic characterization method considering temperature, frequency, and magnetic field. J Braz. Soc. Mech. Sci. Eng. 43, 70 (2021). https://doi.org/10.1007/s40430-021-02821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-02821-z

Keywords

Navigation