Skip to main content
Log in

Single-loop PID controller design for electrical flexible-joint robots

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Most of previous approaches presented for electrical flexible-joint robots (EFJR) utilize back-stepping-based control strategy. In order to have a satisfactory performance in these approaches, the internal signals should converge to their desired trajectories defined by the designer. Usually, these desired trajectories are known as fictitious control signals. In EFJR, each joint is modeled by a fifth-order cascade differential equation. Thus, back-stepping-based approach seems complicated and time-consuming. Thus, the contribution of this paper is focusing on the convergence of the system output and meanwhile guaranteeing boundedness of other system’s states. As a result, the control law dimension and its implementation costs are reduced. In other words, a single-loop PID controller for EFJR has been presented, while previous approaches contain multi-loop controllers. The controller design strategy is based on the actuators’ electrical subsystem. Voltage saturation nonlinearity has been compensated in the control law. Hence, knowledge of the actuator/manipulator dynamics model is not required in the proposed method. The overall closed-loop controlled system is established as BIBO stable, and the link position-tracking errors are asymptotically stable based on the Lyapunov’s stability concept. Numerical and experimental implementations support the viability of the proposed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\( A \) :

State transition matrix

\( B \) :

Friction coefficient

\( C(q,\dot{q})\dot{q} \) :

Centrifugal and Coriolis torques

\( D(q) \) :

Inertia matrix

\( D_{t}^{\beta } \) :

Fractional derivative with order \( \beta \)

\( {\text{dzn}}() \) :

Dead-zone function

\( e(t) \) :

Tracking error

\( F_{s} \) :

Coulomb friction

\( F_{d} \) :

Viscous friction coefficient

\( g(q) \) :

Gravitational torques

\( I_{\text{a}} \) :

Armature current

\( I_{n} \) :

Identity matrix

\( J \) :

Actuator inertia

\( K \) :

Joint stiffness

\( K_{\text{b}} \) :

Back-emf coefficient

\( K_{\text{d}} \) :

Derivative gain

\( K_{\text{I}} \) :

Integrator gain

\( K_{m} \) :

Torque constant

\( \left\| \cdot \right\| \) :

Euclidian norm

\( K_{\text{p}} \) :

Proportional gain

L :

Inductance

\( n \) :

Manipulator degree of freedom

\( q \) :

Joint angular position

\( P, Q \) :

Positive definite matrix

\( R \) :

Electrical resistance

\( \Re^{n} \) :

n-dimensional real space

\( r \) :

Gear ratio

\( {\text{sat}}() \) :

Saturation function

\( u(t) \) :

Controller output

\( u_{\text{r}} (t) \) :

Robust control term

\( V_{1} \) :

Lyapunov candidate for integer-order controller

\( V_{2} \) :

Lyapunov candidate for fractional-order controller

\( v(t) \) :

Motor voltage

\( \theta_{\text{m}} \) :

Motor angular position

\( \rho \) :

Norm of uncertainty

\( \rho_{m} \) :

Uncertainty upper bound

\( \varGamma (n) \) :

Gamma function

\( \mu \) :

Convergence rate

References

  1. Fateh MM (2012) Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn 67:1525–1537

    Article  MathSciNet  Google Scholar 

  2. Fateh MM (2012) Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn 67:2549–2559

    Article  MathSciNet  Google Scholar 

  3. Fateh MM, Souzanchikashani M (2015) Indirect adaptive fuzzy control for flexible-joint robot manipulators using voltage control strategy. J Intell Fuzzy Syst 28(3):1451–1459

    Article  MathSciNet  Google Scholar 

  4. Asadi M, Toossian Shandiz H, Khayatian A (2018) Time scale separation in control of a single-link flexible-joint robot manipulator. IMA J Math Control Inf 35(2):357–373

    MathSciNet  MATH  Google Scholar 

  5. Huang AC, An-chyau H, Ming-chih C, Chien MC (2010) Adaptive control of robot manipulators: a unified regressor-free approach. World Scientific Publishing Co, Singapore

    Book  Google Scholar 

  6. Yoo S-J, Choi Y-H, Park J-B (2008) A study on simple adaptive control of flexible-joint robots considering motor dynamics. J Inst Control Robot Syst 14(11):1103–1109

    Article  Google Scholar 

  7. Li Y, Li T, Tong S (2012) Adaptive fuzzy backstepping dynamic surface control of uncertain nonlinear systems based on filter observer. Int J Fuzzy Syst 14(12):320–329

    MathSciNet  Google Scholar 

  8. Oh JH, Lee JS (1999) Control of flexible joint robot system by backstepping design approach. Intell Automation Soft Comput Taylor Francis 5(4):267–278

    Article  Google Scholar 

  9. Li C, Cui W, Yan D, Wang Y, Wang C (2019) Adaptive dynamic surface control of flexible-joint robot with parametric uncertainties. Sci Iran 26(5):2749–2759

    Google Scholar 

  10. Bosco Mbede J, Baptiste JJ, Ahanda M (2014) Exponential tracking control using backstepping approach for voltage-based control of a flexible joint electrically driven robot. J Robot. https://doi.org/10.1155/2014/241548

    Article  Google Scholar 

  11. Izadbakhsh A (2016) Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification. Nonlinear Dyn 85(2):751–765

    Article  MathSciNet  Google Scholar 

  12. Izadbakhsh A (2017) A note on the “nonlinear control of electrical flexible-joint robots”. Nonlinear Dyn 89:2753–2767

    Article  MathSciNet  Google Scholar 

  13. Izadbakhsh A (2017) Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations. AUT J Model Simul. https://doi.org/10.22060/miscj.2017.12174.5008

    Article  Google Scholar 

  14. Izadbakhsh A, Fateh MM (2014) Robust Lyapunov-based control of flexible-joint robots using voltage control strategy. Arab J Sci Eng 39(4):3111–3121

    Article  MathSciNet  Google Scholar 

  15. Majidabad SS, Shandiz HT, Hajizadeh A (2015) Nonlinear fractional-order power system stabilizer for multi-machine power systems based on sliding mode technique. Int J Robust Nonlinear Control 25(10):1548–1568

    Article  MathSciNet  Google Scholar 

  16. Sun G, Wu L, Kuang Z, Ma Z, Liu J (2018) Practical tracking control of linear motor via fractional-order sliding mode. Automatica 94:221–235

    Article  MathSciNet  Google Scholar 

  17. Heydarinejad H, Delavari H (2017) Fractional order back stepping sliding mode control for blood glucose regulation in type I diabetes patients. In: Babiarz A, Czornik A, Klamka J, Niezabitowski M (eds) Theory and applications of non-integer order systems. Lecture notes in electrical engineering, vol 407. Springer, Cham, pp 187–202

    Chapter  Google Scholar 

  18. Xu S, Sun G, Ma Z, Li X (2018) Fractional-order fuzzy sliding mode control for the deployment of tethered satellite system under input saturation. IEEE Trans Aerosp Electron Syst 55(2):747–756

    Article  Google Scholar 

  19. Nikdel N, Badamchizadeh M, Azimirad V, Nazari A (2016) Fractional-order adaptive backstepping control of robotic manipulators in the presence of model uncertainties and external disturbances. IEEE Trans Ind Electron 63(10):6249–6256

    Article  Google Scholar 

  20. Izadbakhsh A, Kheirkhahan P (2019) Adaptive fractional-order control of electrical flexible-joint robots: theory and experiment. Proc Inst Mech Eng Part I J Syst Control Eng 233(9):1136–1145

    Article  Google Scholar 

  21. Izadbakhsh A, Khorashadizadeh S, Kheirkhahan P (2018) Real-time Fuzzy Fractional-order control of electrically driven flexible-joint robots. AUT J Model Simul 10:15. https://doi.org/10.22060/miscj.2018.13523.5075

    Article  Google Scholar 

  22. Qu Z, Dawson DM (1996) Robust tracking control of robot manipulators. IEEE Press Inc., New York

    MATH  Google Scholar 

  23. Khorashadizadeh S, Fateh MM (2015) Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation. Nonlinear Dyn 79(2):1151–1161

    Article  MathSciNet  Google Scholar 

  24. Khorashadizadeh S, Fateh MM (2013) Adaptive fourier series-based control of electrically driven robot manipulators. In: The 3rd international conference on control, instrumentation, and automation, pp 213–218

  25. Aguils-Camacho N, Duarte-Mermoud MA, Gallegos JA (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19:2951–2957

    Article  MathSciNet  Google Scholar 

  26. Duarte-Mermoud MA, Aguils-Camacho N, Gallegos JA, Castro-Linares R (2015) Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun Nonlinear Sci Numer Simulat 22:650–659

    Article  MathSciNet  Google Scholar 

  27. Gallegos JA, Duarte-Mermoud MA (2017) Convergence of fractional adaptive systems using gradient approach. ISA Trans 69:31–42

    Article  Google Scholar 

  28. Astrom KJ, Wittenmark B (1995) Adaptive control, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  29. Huang S-J, Chen Ch-Y (1993) Measurement and analysis of structural dynamics properties of robotic joint transmission system. J Robot Syst 10(1):103–122

    Article  MathSciNet  Google Scholar 

  30. Izadbakhsh A, Fateh MM (2014) Real-time robust adaptive control of robots subjected to actuator voltage constraint. Nonlinear Dyn 78(3):1999–2014

    Article  Google Scholar 

  31. Moreno-Valenzuela J, Campa R, Santibáñez V (2013) Model-based control of a class of voltage-driven robot manipulators with non-passive dynamics. Comput Electr Eng 39:2086–2099

    Article  Google Scholar 

  32. Podlubny I, Petráš I, Vinagre BM, O’leary P, Dorčák Ľ (2002) Analogue realizations of fractional-order controllers. Nonlinear Dyn 29(281–296):2002

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Khorashadizadeh.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadbakhsh, A., Khorashadizadeh, S. Single-loop PID controller design for electrical flexible-joint robots. J Braz. Soc. Mech. Sci. Eng. 42, 91 (2020). https://doi.org/10.1007/s40430-020-2172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2172-2

Keywords

Navigation