Skip to main content

Advertisement

Log in

An evaluation of combustion aspects with different compression ratios, fuel types and injection systems in a single-cylinder research engine

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The growing commercialization of flex-fuel vehicles in Brazil demands the optimization of internal combustion engines for the operation with ethanol (E100) and gasohol (E22), in an attempt to reduce the fuel consumption and minimize the pollutant emissions into the atmosphere. In this sense, this work proposes the study of different volumetric compression ratios in a single-cylinder research engine in order to conclude about its fuel conversion efficiency and, in particular, a more detailed combustion investigation for two of the most common Brazilian fuels. Dynamometric bench tests were performed for distinct compression ratios, injection systems and fuel types, which demanded a specific piston design to meet the requirements for each combustion chamber configuration. The use of ethanol was the most suitable when compared to gasohol, especially at high load conditions, in which was observed a knock tendency for E22 but not for E100, due to its improved physicochemical properties, resulting in enhanced combustion aspects. The proposed methodology proved effective in allowing fuel conversion efficiency gains for the tested fuels, injection systems and piston designs when compared to the engine baseline operation, with up to 6.1% improvement when using the most appropriate compression ratio. Finally, the ethanol direct injection confirmed the potential of this Brazilian biofuel as one of the most promising renewable options for internal combustion engines in current and future sustainable energy directives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABDC:

After bottom dead center

APMAX:

Angle of maximum pressure (°)

ATDC:

After top dead center

BBDC:

Before bottom dead center

BMEP:

Brake mean effective pressure (bar)

BTDC:

Before top dead center

CA:

Crank angle

CO2 :

Carbon dioxide

COV:

Covariance (%)

CR:

Compression ratio

DI:

Direct injection

E100:

Ethanol

E22:

Gasohol (22% ethanol content)

E27:

Gasohol (27% ethanol content)

GHG:

Greenhouse gases

ICE:

Internal combustion engine

IMEP:

Indicated mean effective pressure (bar)

ISFC:

Indicated specific fuel consumption (g/kWh)

KP_PK:

Knock peak parameter

LCV:

Lower heating value (kJ/kg)

MBF:

Mass burned fraction (%)

MBT:

Maximum brake torque

PFI:

Port fuel injection

SCRE:

Single-cylinder research engine

WOT:

Wide-opened throttle

λ:

Lambda factor

References

  1. Lopes ML, Paulillo SC de L, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, de Amorim Neto HB, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol

  2. Marques DO, Trevizan LSF, Oliveira IMF, Seye O, Silva REP (2017) Combustion assessment of an ethanol/gasoline flex-fuel engine. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-016-0609-4

    Article  Google Scholar 

  3. Claros Garcia JC, Von Sperling E (2017) Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil. Renew Sustain, Energy Rev

    Google Scholar 

  4. Quiroga LCR, Balestieri JAP, Ávila I (2017) Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.12.051

    Article  Google Scholar 

  5. Oliveira CM, Cruz AJG, Costa CBB (2016) Improving second generation bioethanol production in sugarcane biorefineries through energy integration. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2014.11.016

    Article  Google Scholar 

  6. Benites-Lazaro LL, Mello-Théry NA, Lahsen M (2017) Business storytelling about energy and climate change: the case of Brazil’s ethanol industry. Energy Res Soc Sci. https://doi.org/10.1016/j.erss.2017.06.008

    Article  Google Scholar 

  7. Silva TRV, Baeta JGC, Neto NAD, Malaquias ACT, Carvalho MGF, Filho FR (2017) Split-Injection in a Downsized Ethanol SIDI Engine Aiming to Mitigate Pre-Ignition. SAE Tech Pap 2017-Novem:. https://doi.org/10.4271/2017-36-0266

  8. Huang Y, Hong G, Huang R (2016) Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI + GPI) engine. Energy 111:92–103. https://doi.org/10.1016/J.ENERGY.2016.05.109

    Article  Google Scholar 

  9. Boretti A (2012) Towards 40% efficiency with BMEP exceeding 30 bar in directly injected, turbocharged, spark ignition ethanol engines. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2011.12.011

    Article  Google Scholar 

  10. Bureshaid K, Shimura R, Feng D, Zhao H, Bunce M (2019) Experimental studies of the effect of ethanol auxiliary fuelled turbulent jet ignition in an optical engine. SAE Int J Engines. https://doi.org/10.4271/03-12-04-0026

    Article  Google Scholar 

  11. Silva TRV, Baeta JGC, Neto NAD, Malaquias ACT, Carvalho MGF, Filho FR (2017) The use of split-injection technique and ethanol lean combustion on a SIDI engine operation for reducing the fuel consumption and pollutant emissions. SAE Tech Pap 2017-Novem:. https://doi.org/10.4271/2017-36-0259

  12. Turner D, Xu H, Cracknell RF, Natarajan V, Chen X (2011) Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel. https://doi.org/10.1016/j.fuel.2010.12.025

    Article  Google Scholar 

  13. Al-Hasan M (2003) Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Convers Manag. https://doi.org/10.1016/S0196-8904(02)00166-8

    Article  Google Scholar 

  14. Li Y, Gong J, Deng Y, Yuan W, Fu J, Zhang B (2017) Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.12.037

    Article  Google Scholar 

  15. Baêta JGC, Silva TRV, Netto NAD, Malaquias ACT, Filho FR, Pontoppidan M (2018) Full spark authority in a highly boosted ethanol DISI prototype engine. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2018.04.112

    Article  Google Scholar 

  16. Tougri I, Colaço MJ, Leiroz AJK, Melo TCC (2017) Knocking prediction in internal combustion engines via thermodynamic modeling: preliminary results and comparison with experimental data. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-016-0519-5

    Article  Google Scholar 

  17. Phuangwongtrakul S, Wechsatol W, Sethaput T, Suktang K, Wongwises S (2016) Experimental study on sparking ignition engine performance for optimal mixing ratio of ethanol-gasoline blended fuels. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.02.084

    Article  Google Scholar 

  18. Da Costa RBR, Gomes CA, Franco RL, Guzzo ME, Pujatti FJP (2015) E100 Stratified lean combustion analysis in a wall-air guided type GDI optical engine. In: SAE Technical Papers

  19. Foong TM, Morganti KJ, Brear MJ, da Silva G, Yang Y, Dryer FL (2013) The effect of charge cooling on the RON of ethanol/gasoline blends. SAE Int J Fuels Lubr. https://doi.org/10.4271/2013-01-0886

    Article  Google Scholar 

  20. Wang C, Janssen A, Prakash A, Cracknell R, Xu H (2017) Splash blended ethanol in a spark ignition engine—effect of RON, octane sensitivity and charge cooling. Fuel. https://doi.org/10.1016/j.fuel.2017.01.075

    Article  Google Scholar 

  21. Xavier E, Bepu A, Leder M, Arens W (2013) FlexFuel strategy for 2-wheeler. SAE Int J Engines. https://doi.org/10.4271/2013-32-9003

    Article  Google Scholar 

  22. Thakur AK, Kaviti AK, Mehra R, Mer KKS (2017) Progress in performance analysis of ethanol-gasoline blends on SI engine. Renew Sustain, Energy Rev

    Book  Google Scholar 

  23. Badra J, AlRamadan AS, Sarathy SM (2017) Optimization of the octane response of gasoline/ethanol blends. Appl Energy. https://doi.org/10.1016/j.apenergy.2017.06.084

    Article  Google Scholar 

  24. Yücesu HS, Sozen A, Topgül T, Arcaklioǧlu E (2007) Comparative study of mathematical and experimental analysis of spark ignition engine performance used ethanol-gasoline blend fuel. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2006.07.027

    Article  Google Scholar 

  25. Stein RA, Anderson JE, Wallington TJ (2013) An overview of the effects of ethanol-gasoline blends on SI engine performance, fuel efficiency, and emissions. SAE Int J, Engines

    Book  Google Scholar 

  26. Costa RC, Sodré JR (2011) Compression ratio effects on an ethanol/gasoline fuelled engine performance. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2010.09.007

    Article  Google Scholar 

  27. Celik MB (2008) Experimental determination of suitable ethanol-gasoline blend rate at high compression ratio for gasoline engine. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2007.10.028

    Article  Google Scholar 

  28. Yücesu HS, Topgül T, Çinar C, Okur M (2006) Effect of ethanol-gasoline blends on engine performance and exhaust emissions in different compression ratios. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2006.03.006

    Article  Google Scholar 

  29. Balki MK, Sayin C, Canakci M (2014) The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel. https://doi.org/10.1016/j.fuel.2012.09.020

    Article  Google Scholar 

  30. Mourad M, Mahmoud K (2019) Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends. Renew Energy. https://doi.org/10.1016/j.renene.2019.05.064

    Article  Google Scholar 

  31. Wu X, Zhang S, Guo X, Yang Z, Liu J, He L, Zheng X, Han L, Liu H, Wu Y (2019) Assessment of ethanol blended fuels for gasoline vehicles in China: fuel economy, regulated gaseous pollutants and particulate matter. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.07.045

    Article  Google Scholar 

  32. Catapano F, Di Iorio S, Sementa P, Vaglieco BM (2015) Effects of ethanol and gasoline blending and dual fueling on engine performance and emissions. In: SAE Technical Papers

  33. Zaharin MSM, Abdullah NR, Masjuki HH, Ali OM, Najafi G, Yusaf T (2018) Evaluation on physicochemical properties of iso-butanol additives in ethanol-gasoline blend on performance and emission characteristics of a spark-ignition engine. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2018.08.057

    Article  Google Scholar 

  34. Yeliana Y, Cooney C, Worm J, Michalek DJ, Naber JD (2011) Estimation of double-Wiebe function parameters using least square method for burn durations of ethanol-gasoline blends in spark ignition engine over variable compression ratios and EGR levels. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2011.01.040

    Article  Google Scholar 

  35. MME PROCONVE—Programa de Controle de Poluição do Ar por Veículos Automotores. http://www.mma.gov.br/estruturas/163/_arquivos/proconve_163.pdf

  36. Malaquias ACT, Netto NAD, da Costa RBR, Baêta JGC (2020) Combined effects of internal exhaust gas recirculation and tumble motion generation in a flex-fuel direct injection engine. Energy Convers Manag 217:113007. https://doi.org/10.1016/j.enconman.2020.113007

    Article  Google Scholar 

  37. da Silva TD, Barnabé V, Ricci-Vitor AL, Papapostolou V, Tagle M, Henriquez A, Lawrence J, Ferguson S, Wolfson JM, Koutrakis P, Oyola P, Ferreira C, de Abreu LC, de M Monteiro CB, Godleski JJ (2019) Secondary particles formed from the exhaust of vehicles using ethanol-gasoline blends increase the production of pulmonary and cardiac reactive oxygen species and induce pulmonary inflammation. Environ Res. https://doi.org/10.1016/j.envres.2019.108661

    Article  Google Scholar 

  38. Malaquias ACT, Netto NAD, Filho FAR, da Costa RBR, Langeani M, Baêta JGC (2019) The misleading total replacement of internal combustion engines by electric motors and a study of the Brazilian ethanol importance for the sustainable future of mobility: a review. J Braz Soc Mech Sci Eng 41:567. https://doi.org/10.1007/s40430-019-2076-1

    Article  Google Scholar 

  39. De Ferreira Gomes PC, Mendes CF, Lopes GS, Franieck EK, Teixeira AF, Baeta JGC, Netto NAD (2017) High efficiency flex-fuel engines and the end of the 70% paradigm. In: SAE Technical Papers

  40. Steinparzer F, Ardey N, Mattes W, Hiemesch D (2014) The new BMW efficient dynamics engine family. MTZ Worldw. https://doi.org/10.1007/s38313-014-0146-4

    Article  Google Scholar 

  41. da Costa RBR, Valle RM, Hernández JJ, Malaquias ACT, Coronado CJR, Pujatti FJP (2020) Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: combustion, performance and pollutant emission analysis. Appl Energy 261:114438. https://doi.org/10.1016/j.apenergy.2019.114438

    Article  Google Scholar 

  42. Fotouhi A, Montazeri-Gh M (2013) Tehran driving cycle development using the k-means clustering method. Sci Iran. https://doi.org/10.1016/j.scient.2013.04.001

    Article  Google Scholar 

  43. Netto NAD (2018) Estudo experimental de tecnologias que visam a maximização da eficiência de conversão de combustível em um motor monocilíndrico de pesquisa. Universidade Federal de Minas Gerais

  44. Teixeira AF, Rodrigues Filho FA, Moreira TAA, Barros JEM, Baeta JGC (2015) Hybrid combustion model for engine analysis in real time. SAE Tech Pap 2015-Septe:. https://doi.org/10.4271/2015-36-0213

  45. Heywood John B (2018) Internal combustion engine fundamentals, 2nd edn. McGraw-Hill Education, Boston

    Google Scholar 

  46. De O. Carvalho L, De Melo TCC, De Azevedo Cruz Neto RM (2012) Investigation on the fuel and engine parameters that affect the half mass fraction burned (CA50) optimum crank angle. In: SAE Technical Papers

Download references

Acknowledgements

The authors acknowledge the Mobility Technology Center (Centro de Tecnologia da Mobilidade, CTM – UFMG) for providing the experimental structure for this research and to keep investing in R&D of internal combustion engines, especially those fueled with ethanol, a Brazilian renewable energy matrix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto César Teixeira Malaquias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Technical Editor: Mario Eduardo Santos Martins, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaquias, A.C.T., Netto, N.A.D., da Costa, R.B.R. et al. An evaluation of combustion aspects with different compression ratios, fuel types and injection systems in a single-cylinder research engine. J Braz. Soc. Mech. Sci. Eng. 42, 497 (2020). https://doi.org/10.1007/s40430-020-02575-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02575-0

Keywords

Navigation