Skip to main content

Advertisement

Log in

Simulation and experimental studies on process parameters, microstructure and mechanical properties of selective laser melting of stainless steel 316L

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

SLM process parameters such as laser power, scanning speed, layer thickness and hatch spacing play a crucial role in the quality of the processed product. In order to find the parameters suitable for SLM process, a finite element model was established to simulate the distribution of temperature field of selective laser melting (SLM) stainless steel 316L (SS316L) parts. After finite element simulation, the optimum factor levels for SLM processing SS316L were as follows: laser power of 100–200 W, scanning speed of 500–1500 mm/s, hatch spacing of 0.04–0.12 mm, and layer thickness of 0.03–0.06 mm. Then, based on a series of experiments, different laser energy densities were divided into three regions corresponding to three melting mechanisms: the partial melting zone (37.88–75.76 J/mm3), the full melting zone (75.76–151.52 J/mm3), and the over-melting zone (larger than 151.52 J/mm3). The surface roughness, density, microstructure and mechanical properties of the SLM SS316L were strongly dependent on the laser energy density. The results showed that an excellent SS316L part with a relative density higher than 99.66% and good mechanical properties could be obtained at a laser energy density of 119.05 J/mm3 with a laser powder of 200 W, a scanning speed of 700 mm/s, a hatch spacing of 0.08 mm and a layer thickness of 0.03 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11(1):26–36

    Article  Google Scholar 

  2. Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 46(11):1188–1193

    Article  Google Scholar 

  3. Gebhardt A, Schmidt F-M, Hoetter J-S, Sokalla W, Sokalla P (2010) Additive manufacturing by selective laser melting the realizer desktop machine and its application for the dental industry. In: Schmidt M, Vollertsen F, Geiger M (eds) Laser assisted net shape engineering 6, Proceedings of the lane 2010, Part 2, pp 543–549

  4. Tucho WM, Lysne VH, Austbo H, Sjolyst-Kverneland A, Hansen V (2018) Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L. J Alloys Compd 740:910–925

    Article  Google Scholar 

  5. Alsalla H, Hao L, Smith C (2016) Fracture toughness and tensile strength of 316L stainless steel cellular lattice structures manufactured using the selective laser melting technique. Mater Sci Eng A 669:1–6

    Article  Google Scholar 

  6. Zhou B, Zhou J, Li H, Lin F (2018) A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum. Mater Sci Eng A 724:1–10

    Article  Google Scholar 

  7. Li C, White R, Fang XY, Weaver M, Guo YB (2017) Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater Sci Eng A 705:20–31

    Article  Google Scholar 

  8. Li X, Willy HJ, Chang S, Lu W, Herng TS, Ding J (2018) Selective laser melting of stainless steel and alumina composite: experimental and simulation studies on processing parameters, microstructure and mechanical properties. Mater Des 145:1–10

    Article  Google Scholar 

  9. Niendorf T, Leuders S, Riemer A, Richard HA, Troester T, Schwarze D (2013) Highly anisotropic steel processed by selective laser melting. Metall Mater Trans B 44(4):794–796

    Article  Google Scholar 

  10. Liverani E, Toschi S, Ceschini L, Fortunato A (2017) Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J Mater Process Technol 249:255–263

    Article  Google Scholar 

  11. Li R, Shi Y, Wang Z, Wang L, Liu J, Jiang W (2010) Densification behavior of gas and water atomized 316L stainless steel powder during selective laser melting. Appl Surf Sci 256(13):4350–4356

    Article  Google Scholar 

  12. AlMangour B, Grzesiak D, Borkar T, Yang J-M (2018) Densification behavior, microstructural evolution, and mechanical properties of TiC/316L stainless steel nanocomposites fabricated by selective laser melting. Mater Des 138:119–128

    Article  Google Scholar 

  13. Shi Q, Gu D, Xia M, Cao S, Rong T (2016) Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol 84:9–22

    Article  Google Scholar 

  14. Wang Z, Xiao Z, Tse Y, Huang C, Zhang W (2019) Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy. Opt Laser Technol 112:159–167

    Article  Google Scholar 

  15. Chen L, Sun Y, Li L, Ren Y, Ren X (2020) In situ TiC/Inconel 625 nanocomposites fabricated by selective laser melting: densification behavior, microstructure evolution, and wear properties. Appl Surf Sci 518:145981

    Article  Google Scholar 

  16. Chen L, Sun Y, Li L, Ren X (2020) Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting. Corros Sci 169:108606

    Article  Google Scholar 

  17. Dai D, Gu D (2014) Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater Des 55:482–491

    Article  Google Scholar 

  18. Wu J, Wang L, An X (2017) Numerical analysis of residual stress evolution of AlSi10Mg manufactured by selective laser melting. Optik 137:65–78

    Article  Google Scholar 

  19. Kolossov S, Boillat E, Glardon R, Fischer P, Locher M (2004) 3D FE simulation for temperature evolution in the selective laser sintering process. Int J Mach Tools Manuf 44(2):117–123

    Article  Google Scholar 

  20. Anestiev L, Froyen L (1999) Model of the primary rearrangement processes at liquid phase sintering and selective laser sintering due to biparticle interactions. J Appl Phys 86:4008–4017

    Article  Google Scholar 

  21. Hu H, Ding X, Wang L (2016) Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg. Optik 127(20):8883–8891

    Article  Google Scholar 

  22. Ren NF, Jia L, Wang D (2013) Numerical simulation analysis on the temperature field in indirect selective laser sintering of 316L. Adv Mater Res 711:209–213

    Article  Google Scholar 

  23. Mercelis P, Kruth J-P (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265

    Article  Google Scholar 

  24. Bertoli US, Wolfer AJ, Matthews MJ, Delplanque J-PR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340

    Article  Google Scholar 

  25. Wang D, Song C, Yang Y, Bai Y (2016) Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater Des 100:291–299

    Article  Google Scholar 

  26. Wen S, Li S, Wei Q, Yan C, Sheng Z, Shi Y (2014) Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J Mater Process Technol 214(11):2660–2667

    Article  Google Scholar 

  27. Murr LE, Martinez E, Amato KN, Gaytan SM, Hernandez J, Ramirez DA, Shindo PW, Medina F, Wicker RB (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J Mater Res Technol 1(1):42–54

    Article  Google Scholar 

  28. Cooper DE, Blundell N, Maggs S, Gibbons GJ (2013) Additive layer manufacture of Inconel 625 metal matrix composites, reinforcement material evaluation. J Mater Process Technol 213(12):2191–2200

    Article  Google Scholar 

  29. Zhang B, Bi G, Nai S, Sun C-N, Wei J (2016) Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting. Opt Laser Technol 80:186–195

    Article  Google Scholar 

  30. Lin X, Yue TM, Yang HO, Huang WD (2005) Laser rapid forming of SS316L/Rene88DT graded material. Mater Sci Eng A 391(1–2):325–336

    Article  Google Scholar 

  31. Liu F, Lin X, Gaolin Y, Chunping H, Jing C, Weidong H (2010) Microstructures and mechanical properties of laser solid formed nickle base superalloy Inconel 718 prepared in different atmospheres. Acta Metall Sin 46(9):1047–1054

    Article  Google Scholar 

  32. Farshidianfar MH, Khajepour A, Gerlich AP (2016) Effect of real-time cooling rate on microstructure in laser additive manufacturing. J Mater Process Technol 231:468–478

    Article  Google Scholar 

  33. Saeidi K, Gao X, Zhong Y, Shen ZJ (2015) Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater Sci Eng A 625:221–229

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the projects supported by the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents, the Natural Science in Colleges of Jiangsu Province of China (Grant No. 15KJB460005), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1501102C), Advanced Talent Foundation of Jiangsu University of China (Grant No. 14JDG138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhou Zhang.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, L., Zhou, J. et al. Simulation and experimental studies on process parameters, microstructure and mechanical properties of selective laser melting of stainless steel 316L. J Braz. Soc. Mech. Sci. Eng. 42, 402 (2020). https://doi.org/10.1007/s40430-020-02491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02491-3

Keywords

Navigation