Skip to main content
Log in

Modelling and optimizing performance parameters in the wire-electro discharge machining of Al5083/B4C composite by multi-objective response surface methodology

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Composite is an artificial multiphase material that constituent phases which are chemically dissimilar and separated by a distinct interface. As a result of such anisotropic and non-homogeneous formation machining of composites is a strenuous task. Therefore, the need arose for formulating a stable predictive model. The comprehensive intention of this study is to develop a highly robust and stable predictive soft-computing model for forecasting the machining performance of Al-5083 alloy reinforced with B4C particles (Al5083/B4C). The study mostly emphasize on selecting the best machining parameters among the conducted experiments and evaluating the optimal machining parameters for Al5083/B4C composite in wire-electro discharge machin. The paper is an integration of equally weighted experimental as well as computational study. In the experimental part of the study, 5 different specimen of Al5083/B4C is prepared by the ex situ technique through stir casting process. The experimental part includes design of experiment by Taguchi’s method. The computational part of the study comprised of three different stages. The first stage involves the mathematical modelling of the performance measures and statistical scrutiny of the models. In the second stage, the best machining parameters are selected based on the fuzzy IF–then rules. The final stage of the manuscript is the trade-off analysis conducted to obtain the optimal machining parameters. In order to test the robustness of the formulated model an experimental validation is carried out at the optimal machining combination. The error calculated from the comparison is within the range of 2–5% which justifies the objective of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Jartiz AE (1965) Design 18

  2. Gopal Krishna UB, Sreenivas Rao KV, Vasudeva B (2013) Effect of boron carbide reinforcement on aluminium matrix composites. Int J Metall Mater Sci Eng (IJMMSE) 3:41–48

    Google Scholar 

  3. Teti R (2002) Machining of composite materials. CIRP Ann Manuf Technol 51(2):611–634

    Article  Google Scholar 

  4. Sheikh-Ahmad J, Davim JP (2012) Tool-wear in machining processes for composites. In: Machining technology for composite materials, pp 116–153

  5. Abrate S, Walton D (1992) Machining of composite materials. Part II: non-traditional methods. Compos Manuf 3(2):85–94

    Article  Google Scholar 

  6. Ramesh S (2015) Investigations on machining characteristics of metal matrix composites in wire electrical discharge machining. http://hdl.handle.net/10603/141712

  7. Tapadar J, Thakur R, Chetia P, Tamang SK, Samanta S (2017) Modeling of WEDM parameters while machining Mg-SiC metal matrix composite. Int J Technol 8(5):878–886

    Article  Google Scholar 

  8. Neubauer DV (2008) Statistical design of experiments with engineering applications

  9. Ross PJ (1996) Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design

  10. Shadab M, Singh R, Rai RN (2018) Multi-objective optimization of wire electrical discharge machining process parameters for Al5083/7%B4C composite using metaheuristic techniques. Arab J Sci Eng. https://doi.org/10.1007/s13369-018-3491-9

    Article  Google Scholar 

  11. Rao RV, Pawar PJ (2009) Modelling and optimization of process parameters of wire electrical discharge machining. Proc Inst Mech Eng Part B J Eng Manuf 223(11):1431–1440

    Article  Google Scholar 

  12. Ugrasen G, Ravindra HV, Prakash GN, Keshavamurthy R (2014) Estimation of machining performances using MRA, GMDH and artificial neural network in wire EDM of EN-31. Procedia materials science 6:1788–1797

    Article  Google Scholar 

  13. Mahapatra SS, Patnaik A (2006) Parametric optimization of wire electrical discharge machining (WEDM) process using Taguchi method. J Braz Soc Mech Sci Eng 28(4):422–429

    Article  Google Scholar 

  14. Datta S, Mahapatra S (2010) Modeling, simulation and parametric optimization of wire EDM process using response surface methodology coupled with grey-Taguchi technique. Int J Eng Sci Technol 2(5):162–183

    Article  Google Scholar 

  15. Conde A, Arriandiaga A, Sanchez JA, Portillo E, Plaza S, Cabanes I (2018) High-accuracy wire electrical discharge machining using artificial neural networks and optimization techniques. Robot Comput Integr Manuf 49:24–38

    Article  Google Scholar 

  16. Garg MP, Jain A, Bhushan G (2012) Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. Proc Inst Mech Eng Part B J Eng Manuf 226(12):1986–2001

    Article  Google Scholar 

  17. Gao Q, Zhang QH, Su SP, Zhang JH (2008) Parameter optimization model in electrical discharge machining process. J Zhejiang Univ Sci A 9(1):104–108

    Article  Google Scholar 

  18. Gadakh VS (2012) Parametric optimization of wire electrical discharge machining using TOPSIS method. Adv Prod Eng Manag 7(3):157

    Google Scholar 

  19. Senthil P, Vinodh S, Singh AK (2014) Parametric optimisation of EDM on Al-Cu/TiB2 in situ metal matrix composites using TOPSIS method. Int J Mach Mach Mater 16(1):80–94

    Google Scholar 

  20. Manivannan R, Kumar MP (2017) Multi-attribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method. Mater Manuf Process 32(2):209–215

    Article  Google Scholar 

  21. Bhuyan R, Routara B (2016) Optimization the machining parameters by using VIKOR and entropy weight method during EDM process of Al–18% SiCp metal matrix composite. Decis Sci Lett 5(2):269–282

    Article  Google Scholar 

  22. Gangil M, Pradhan MK (2018) Optimization the machining parameters by using VIKOR Method during EDM process of titanium alloy. Mater Today Proc 5:7486–7495

    Article  Google Scholar 

  23. Muniappan A, Raj JA, Jayakumar V, Prakash RS, Sathyaraj R (2018) Optimization of WEDM process parameters using standard deviation and MOORA method. In: IOP conference series: materials science and engineering, vol 402, no 1, IOP Publishing, p 012139

  24. Khan A, Maity KP (2016) Parametric optimization of some non-conventional machining processes using MOORA method. In: International journal of engineering research in Africa, vol 20, Trans Tech Publications Ltd, pp 19–40

  25. Majumder H, Maity K (2017) Optimization of machining condition in WEDM for titanium grade 6 using MOORA coupled with PCA—a multivariate hybrid approach. J Adv Manuf Syst 16(02):81–99

    Article  Google Scholar 

  26. Kumar A, Hussain SAI, Rai RN (2019) Optimization by AHP-ARAS of EDM process parameters on machining AA7050-10% B 4 C composite. In: Advances in industrial and production engineering, Springer, Singapore, pp 285–296

  27. Bagal DK, Barua A, Jeet S, Satapathy P, Patnaik DV MCDM optimization of parameters for wire-EDM machined stainless steel using hybrid RSM-TOPSIS, genetic algorithm and simulated annealing

  28. Nayak BB, Mahapatra SS (2017) An intelligent approach for multi-response optimisation of WEDM parameters. Int J Ind Syst Eng 25(2):197–227

    Google Scholar 

  29. Hussain SAI, Shabnam SS, Mandal UK, Mondal SP (2018) AHP coupled multi-criteria decision making approach for selection of carbon nanotube applied in mechanical engineering under grey-environment. Int J Mater Struct Integr 12(1–3):224–244

    Article  Google Scholar 

  30. Yusoff Y, Ngadiman MS, Zain AM (2011) Overview of NSGA-II for optimizing machining process parameters. Procedia Eng 15:3978–3983

    Article  Google Scholar 

  31. Bharti PS, Maheshwari S, Sharma C (2012) Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. J Mech Sci Technol 26(6):1875–1883

    Article  Google Scholar 

  32. Kumar A, Majumder H, Vivekananda K, Maity KP (2017) NSGA-II approach for multi-objective optimization of wire electrical discharge machining process parameter on inconel 718. Mater Today Proc 4(2):2194–2202

    Article  Google Scholar 

  33. Choudhuri B, Sen R, Ghosh SK, Saha SC (2018) Modelling of surface roughness and tool consumption of WEDM and optimization of process parameters based on fuzzy-PSO. Mater Today Proc 5(2):7505–7514

    Article  Google Scholar 

  34. Kumar P, Gupta M, Kumar V (2019).Experimental analysis of WEDM machined surface of Inconel 825 using single objective PSO. In: Journal of physics: conference series, vol 1240, no 1, IOP Publishing, p 012053

  35. Devarasiddappa D, Chandrasekaran M, Arunachalam R (2020) Experimental investigation and parametric optimization for minimizing surface roughness during WEDM of Ti6Al4V alloy using modified TLBO algorithm. J Braz Soc Mech Sci Eng 42(3):1–18

    Article  Google Scholar 

  36. Gaitonde VN, Karnik SR, Davim JP (2012) Computational methods and optimization in machining of metal matrix composites. In: Machining of metal matrix composites, Springer, London, pp 143–162

  37. Karabulut Ş, Karakoç H (2017) Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters. Neural Comput Appl 28(2):313–327

    Article  Google Scholar 

  38. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42(4):599–653

    Article  MATH  MathSciNet  Google Scholar 

  39. Cusack MM (1984) The use and limitations of mathematical models in the planning and control of construction projects. Constr Manag Econ 2(3):219–224

    Article  Google Scholar 

  40. Golomb SW (1971) Mathematical models: uses and limitations. IEEE Trans Reliab 20(3):130–131

    Article  Google Scholar 

  41. Hidalgo B, Goodman M (2013) Multivariate or multivariable regression? Am J Pub Health 103(1):39–40

    Article  Google Scholar 

  42. Astephen JL, Deluzio KJ (2004) A multivariate gait data analysis technique: application to knee osteoarthritis. Proc Inst Mech Eng Part H J Eng Med 218(4):271–279. https://doi.org/10.1243/0954411041560983

    Article  Google Scholar 

  43. Kovács J, Bodnár N, Török Á (2016) The application of multivariate data analysis in the interpretation of engineering geological parameters. Open Geosci 8(1):52–61

    Google Scholar 

  44. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions (with discussion). J R Stat Soc Ser B 13(1):1–45

    MATH  Google Scholar 

  45. CevheroğluÇıra S, Dağ A, Karakuş A (2016) Application of response surface methodology and central composite inscribed design for modeling and optimization of marble surface quality. In: Advances in materials science and engineering

  46. Lin Y, Huang J, Wei J, Liao X, Xiao Z (2018) Modeling and optimization of high-grade compacted graphite iron milling force and surface roughness via response surface methodology. Aust J Mech Eng 16(1):50–57

    Article  Google Scholar 

  47. Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31

    Article  Google Scholar 

  48. Isha A, Yusof NA, Malik MA, Hamdan H (2006) Application of artificial neural network to simultaneous spectrophotometric determination of Lead (II) and Mercury (II) based on 2-(5-bromo-2-piridylazo)-5 diethylaminophenol. Malay J Chem 8:72–79

    Google Scholar 

  49. Hussain SAI, Mandal UK, Mondal SP (2018) Decision maker priority index and degree of vagueness coupled decision making method: a synergistic approach. Intl J Fuzzy Syst 20(5):1551–1566

    Article  MathSciNet  Google Scholar 

  50. Jiang Y, Zhao L (2012) A compromise decision-making model to recover emergency logistics network. In: Intelligent decision technologies, Springer, Berlin, pp 3–12

  51. Dubois D, Prade H (1996) What are fuzzy rules and how to use them. Fuzzy Sets Syst 84(2):169–185

    Article  MATH  MathSciNet  Google Scholar 

  52. Haimes YY, Chankong V (1979) Kuhn-Tucker multipliers as trade-offs in multiobjective decision-making analysis. Automatica 15(1):59–72

    Article  MATH  Google Scholar 

  53. Hussain SA (2015) Fuzzy rule based optimization of multiple responses in turning of GFRP composites. Int J Adv Sci Technol 74:25–34

    Article  Google Scholar 

  54. Yilmaz O, Eyercioglu O, Gindy NN (2006) A user-friendly fuzzy-based system for the selection of electro discharge machining process parameters. J Mater Process Technol 172(3):363–371

    Article  Google Scholar 

  55. Debbarma B, Chakraborti P, Bose PK, Deb M, Banerjee R (2017) Exploration of PROMETHEE II and VIKOR methodology in a MCDM approach for ascertaining the optimal performance-emission trade-off vantage in a hydrogen-biohol dual fuel endeavour. Fuel 210:922–935

    Article  Google Scholar 

  56. Panda JK, Sastry GRK, Rai RN (2017) A Taguchi-fuzzy-based multi-objective optimization of a direct injection diesel engine fueled with different blends of Leucas zeylanica methyl ester and 2-ethylhexyl nitrate diesel additive with diesel. J Energy Resour Technol 139(4):042209

    Article  Google Scholar 

  57. Lewis RC, Ding S, Geschke U (1991) Using trade-off analysis to measure consumer choices: the full profile method. Hosp Res J 15(1):75–92

    Google Scholar 

  58. Matzdorf B, Müller K (2010) Environmental economic and social trade-offs. In: International conference and workshop Salzau Castle and Kiel University

  59. Keen EC (2014) Tradeoffs in bacteriophage life histories. Bacteriophage 4(2):e28365

    Article  Google Scholar 

  60. Norris K, Evans MR (2000) Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol 11(1):19–26

    Article  Google Scholar 

  61. Bhowmik S, Paul A, Panua R, Ghosh SK, Debroy D (2018) Performance-exhaust emission prediction of diesosenol fueled diesel engine: an ANN coupled MORSM based optimization. Energy 153:212–222

    Article  Google Scholar 

  62. Moghaddam M, Khajeh M (2011) Comparison of response surface methodology and artificial neural network in predicting the microwave-assisted extraction procedure to determine zinc in fish muscles. Food Nutr Sci 2(8):803–808. https://doi.org/10.4236/fns.2011.28110

    Article  Google Scholar 

  63. Sharma P, Singh L, Dilbaghi N (2009) Optimization of process variables for decolorization of disperse yellow 211 by bacillus subtilis using box-behnken design. J Hazard Mater 164(2–3):1024–1029. https://doi.org/10.1016/j.jhazmat.2008.08.104

    Article  Google Scholar 

  64. Maran JP, Manikandan S, Nivetha CV, Dinesh R (2013) Ultrasound assisted extraction of bioactive compounds from Nephelium lappaceum L. fruit peel using central composite face centered response surface design. Arab J Chem 52(3):507–516.

    Google Scholar 

  65. Behera SK, Meena H, Chakraborty S, Meikap BC (2018) Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. Int J Min Sci Technol 28(4):621–629

    Article  Google Scholar 

  66. Afolabi RO, Orodu OD, Efeovbokhan VE, Rotimi OJ (2017) Optimizing the rheological properties of silica nano-modified bentonite mud using overlaid contour plot and estimation of maximum or upper shear stress limit. Cogent Eng 4(1):1287248

    Article  Google Scholar 

  67. Ghadikolaei MA, Wei L, Cheung CS, Yung KF (2019) Effects of engine load and biodiesel content on performance and regulated and unregulated emissions of a diesel engine using contour-plot map. Sci Total Environ 658:1117–1130

    Article  Google Scholar 

  68. Gopalsamy BM, Mondal B, Ghosh S (2009) Taguchi method and ANOVA: an approach for process parameters optimization of hard machining while machining hardened steel

  69. Kim HY (2014) Statistical notes for clinical researchers: two-way analysis of variance (ANOVA)-exploring possible interaction between factors. Restor Dent Endod 39(2):143–147

    Article  Google Scholar 

  70. Bhattacharjee P, Debnath A, Chakraborty S, Mandal UK (2017) Selection of optimal aluminum alloy using TOPSIS method under fuzzy environment. J Intell Fuzzy Syst 32(1):871–876

    Article  Google Scholar 

Download references

Acknowledgements

The authors like to acknowledge the funding agency of the Government of India for providing assistantship to carry out Ph.D. research work. The authors would like to extend their heartfelt gratitude for to the reviewers for giving their valuable time in reviewing the paper. The authors would also like to thank the editor and editor-in-chief of the journal for considering the paper.

Funding

The authors also declare that no research grant is received from the industry or any government or private institute for carrying out of the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abou Iltaf Hussain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Hussain, S.A.I., Dash, A. et al. Modelling and optimizing performance parameters in the wire-electro discharge machining of Al5083/B4C composite by multi-objective response surface methodology. J Braz. Soc. Mech. Sci. Eng. 42, 344 (2020). https://doi.org/10.1007/s40430-020-02418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02418-y

Keywords

Navigation