Skip to main content
Log in

Analytical solutions of bending and free vibration of moderately thick micro-plate via two-variable strain gradient theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the strain gradient theory (SGT) and two-variable refined plate theory are implemented simultaneously to analyze bending and free vibration of micro-plate. The proposed theory is called two-variable strain gradient theory (TV-SGT). The TV-SGT, which can be used for both thin and moderately thick micro-plates, predicts parabolic variation of transverse shear stresses across the plate thickness and does not need the shear correction factor. The governing equations are obtained using a variational approach and solved analytically to find the deflection of simply supported micro-plate under uniformly distributed loading and natural frequency of this plate. Thereby, the effects of length scale parameters and dimensions on the bending deflection and natural frequency of the micro-plate are investigated. Results show that, strengthen micro-plate has higher shear rigidity. Moreover, it is inferred that TV-SGT is well defined to analyze the micro-plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lakes RS (1980) The role of gradient effects in the piezoelectricity of bone. IEEE Trans Biomed Eng BME 27(5):282–283

    Google Scholar 

  2. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity, theory and experiment. Acta Metall Mater 42:475–487

    Google Scholar 

  3. Chong ACM, Lam DCC (1999) Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res 14:4103–4110

    Google Scholar 

  4. Yang JFC, Lakes RS (1982) Experimental study of micropolar and couple stress elasticity in compact bone in bending. J Biomech 15:91–98

    Google Scholar 

  5. Hofstetter K, Hellmich C, Eberhardsteiner J (2005) Development and experimental validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech A/Solids 24:1030–1053

    MATH  Google Scholar 

  6. Wang CM, Reddy JN, Lee KH (2000) Shear deformable beams and plates, relationship with the classical theory. Elsevier Ltd., New York

    Google Scholar 

  7. Pijaudier-Cabot TGP, Bazant ZP (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533

    MATH  Google Scholar 

  8. Bazant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55:287–293

    MATH  Google Scholar 

  9. Sayyad AS, Ghugal YM (2020) Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen’s nonlocal theory. Int J Appl Mech 12(1):2050007

    Google Scholar 

  10. Nikam RD, Sayyad AS (2018) A unified nonlocal formulation for bending, buckling and free vibration analysis of nanobeams. Mech Adv Mater Struct 1:1–9

    Google Scholar 

  11. Eringen AC (1968) Theory of micropolar elasticity. Fract Adv Treatise 2:621–729

    MATH  Google Scholar 

  12. Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    MathSciNet  MATH  Google Scholar 

  13. Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4:109–124

    MATH  Google Scholar 

  14. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    MATH  Google Scholar 

  15. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271

    MATH  Google Scholar 

  16. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    MATH  Google Scholar 

  17. Gao H, Huang Y (2001) Taylor-based nonlocal theory of plasticity. Int J Solids Struct 38:2615–2637

    MATH  Google Scholar 

  18. Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity. Part I: theory. J Mech Phys Solids 47:1239–1263

    MathSciNet  MATH  Google Scholar 

  19. Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity. Part II: analysis. J Mech Phys Solids 48:99–128

    MathSciNet  MATH  Google Scholar 

  20. Hwang KC, Jiang H, Huang Y, Gao H, Hu N (2002) A finite deformation theory of strain gradient plasticity. J Mech Phys Solids 50:81–99

    MathSciNet  MATH  Google Scholar 

  21. Tiersten HF, Bleustein JL (1974) Generalized elastic continua. In: Herrmann G, Mindlin RD (eds) Applied mechanics, vol 64. Pergamon Press, New York, pp 67–103

    Google Scholar 

  22. Vardoulakis I, Sulem J (1995) Bifurcation analysis in geo mechanics. Chapman and Hall, London, p 66

    Google Scholar 

  23. Lakes R (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mhlhaus HB (ed) Continuum models for materials with microstructure, vol 70. Wiley, Chichester, pp 1–25

    MATH  Google Scholar 

  24. Papargyri-Beskou S, Beskos DE (2008) Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch Appl Mech 78:625–635

    MATH  Google Scholar 

  25. Farahmand H, Ahmadi AR, Arabnejad S (2011) Thermal Buckling analysis of rectangular flexural micro-plates using higher continuity p-version finite element method. Thin-Walled Struct 49:1584–1591

    Google Scholar 

  26. Farahmand H, Mohammadi M (2013) Navier solution for static analysis of functionally graded rectangular micro-plates. Int J Multiscale Comput Eng 11(4):309–318

    Google Scholar 

  27. Farahmand H, Ahmadi AR, Arabnejad S (2013) A Novel application of higher continuity finite element in vibratoin analysis of micro-plates. Int J Struct Stab Dyn 13(4):12500800

    MATH  Google Scholar 

  28. Farahmand H, Arabnejad S (2010) Developing a novel finite elastic approach in strain gradient theory for microstructures. Int J Multiscale Comput Eng 8(4):441–446

    Google Scholar 

  29. Lazopoulos KA (2009) On bending of strain elastic micro-plates. Mech Res Commun 36:777–783

    MathSciNet  MATH  Google Scholar 

  30. Wang B, Zhou S, Zhao J, Chen X (2011) A size dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur J Mech A/Solids 30:517–524

    MATH  Google Scholar 

  31. Jensen TE, Ayala RP (1976) The fine structure of a microplate-microtubule array, microfilaments and polyhedral body associated microtubules in several species of Anabaena. Arch Microbiol 111(1–2):1–6

    Google Scholar 

  32. Weckman NE, Seshia AA (2017) Reducing dissipation in piezoelectric flexural microplate resonators in liquid environments. Sens Actuators A 267:464–473

    Google Scholar 

  33. Ghorbani Shenas A, Malekzadeh P (2017) Thermal environmental effects on free vibration of functionally graded isosceles triangular microplates. Mech Adv Mater Struct 24(11):885–907

    Google Scholar 

  34. Reddy JN (2006) Theory and analysis of elastic plates and shells, 2nd edn. Taylor and Francis, Philadelphia

    Google Scholar 

  35. Bui TQ, Nguyen MN, Zhang C (2011) An efficient meshfree method for vibration analysis of laminated composite plates. Comput Mech 48(2):175–193

    MATH  Google Scholar 

  36. Bui TQ, Nguyen TN, Nguyen-Dang H (2009) A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems. Int J Numer Methods Eng 77(10):1371–1395

    MathSciNet  MATH  Google Scholar 

  37. Bui TQ, Nguyen MN (2011) A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates. Comput Struct 89(3–4):380–394

    Google Scholar 

  38. Bui TQ, Nguyen MN, Zhang C (2011) Buckling analysis of Reissner-Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method. Eng Anal Bound Elem 35(9):1038–1053

    MathSciNet  MATH  Google Scholar 

  39. Bui TQ, Doan DH, Van Do T, Hirose S, Duc ND (2016) High frequency modes meshfree analysis of Reissner-Mindlin plates. J Sci Adv Mater Devices 1(3):400–412

    Google Scholar 

  40. Thanh CL, Tran LV, Bui TQ, Nguyen HX, Abdel-Wahab M (2019) Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates. Compos Struct 221:110838

    Google Scholar 

  41. Yu T, Hu H, Zhang J, Bui TQ (2019) Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory. Thin-Walled Struct 138:1–4

    Google Scholar 

  42. Liu S, Yu T, Yin S, Bui TQ (2019) Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput Struct 212:173–187

    Google Scholar 

  43. Yu T, Zhang J, Hu H, Bui TQ (2019) A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis. Compos Struct 211:76–88

    Google Scholar 

  44. Yin S, Yu T, Bui TQ, Zheng X, Yi G (2017) Rotation-free isogeometric analysis of functionally graded thin plates considering in-plane material inhomogeneity. Thin-Walled Struct 119:385–395

    Google Scholar 

  45. Liu S, Yu T, Yin S, Bui TQ (2018) Size effect on cracked functional composite micro-plates by an XIGA-based effective approach. Meccanica 53(10):2637–2658

    MathSciNet  MATH  Google Scholar 

  46. Liu S, Yu T, Bui TQ (2017) Size effects of functionally graded moderately thick microplates: a novel non-classical simple-FSDT isogeometric analysis. Eur J Mech A/Solids 66:446–458

    MathSciNet  MATH  Google Scholar 

  47. Shimpi R (2002) Refined plate theory and its variants. AIAA J 40(1):137–146

    Google Scholar 

  48. Malekzadeh P, Shenas AG, Ziaee S (2018) Thermal buckling of functionally graded triangular microplates. J Braz Soc Mech Sci Eng 40(9):418

    Google Scholar 

  49. Thai H, Choi D (2014) Improved refined plate theory accounting for effect of thickness stretching in functionally graded plates. Compos Part B 56:705–716

    Google Scholar 

  50. Narender S, Gopalakrishnan S (2012) Scale effects on buckling analysis of orthotropic nanoplates based on nonlocal two-variable refined plate theory. Acta Mech 223(2):395–413

    MathSciNet  MATH  Google Scholar 

  51. Malekzadeh P, Shojaee M (2013) Free vibration of nanoplates based on a nonlocal two-variable refined plate theory. Acta Mech 95:443–452

    Google Scholar 

  52. Thai HT, Vo TP, Bui TQ, Nguyen TK (2014) Quasi-3D hyperbolic shear deformation theory for functionally graded plates. Acta Mechanica 225(3):951–964

    MathSciNet  MATH  Google Scholar 

  53. Thai HT, Vo TP (2013) A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates. Appl Math Model 37(5):3269–3281

    MathSciNet  MATH  Google Scholar 

  54. Sayyad AS (2013) Flexure of thick orthotropic plates by exponential shear deformation theory. Latin Am J Solids Struct 10(3):473–490

    Google Scholar 

  55. Thai H, Kim S (2012) Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int J Mech Sci 54:269–276

    Google Scholar 

  56. Szilard R (2004) Theories and applications of plate analysis: classical, numerical and engineering methods. Wiley, New York

    Google Scholar 

  57. Papargyri- Beskou S, Giannakopoulos AE, Beskos DE (2010) Variational analysis of gradient elastic flexural plates under static loading. Int J Solids Struct 42:2755–2766

    MATH  Google Scholar 

  58. Ahmadi AR, Farahmand H (2012) static analysis of rectangular flexural micro-plates using higher continuity finite element method. Mécanique & Industries 13(4):261–269

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Farahmand.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahmand, H. Analytical solutions of bending and free vibration of moderately thick micro-plate via two-variable strain gradient theory. J Braz. Soc. Mech. Sci. Eng. 42, 251 (2020). https://doi.org/10.1007/s40430-020-02341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02341-2

Keywords

Navigation