Skip to main content
Log in

Nonlinear vibration analysis of an elastically connected double-non-classical Timoshenko microbeam subject to moving particle based on the modified couple stress theory

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this article, the nonlinear transverse vibration of an elastically connected double microbeam system carrying a moving particle is assessed based on the modified couple stress and non-classical Timoshenko beam theories. Hamilton’s principle is applied to develop the motion equations and corresponding boundary conditions, and the Galerkin method is used to solve these equations. The numerical study reveals that the nonlinear and modified couple stress theories predict a stiffer system than the linear and classical theories do. A parametric study is run to determine the different parameters’ influence like the aspect ratio, the stiffness modulus of the elastic layer and the velocity of the moving particle, on the dynamic response of the system. The results show that the aspect ratio has a significant effect on the dynamic response of the system, indicating that the classical theory cannot predict the dynamic behavior of micro-size beam systems. The elastic layer stiffness modulus and the velocity of the moving particle have considerable effects on the dynamic deflections of the double-microbeam system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lun F-Y, Zhang P, Gao F-B, Jia H-G (2006) Design and fabrication of micro-optomechanical vibration sensor. Weixi Jiagong Jishu/Microfabr Technol 120:61–64

    Google Scholar 

  2. Mojahedi M, Moghimi Zand M, Ahmadian MT (2010) Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method. Appl Math Model 34:1032–1041. https://doi.org/10.1016/j.apm.2009.07.013

    Article  MathSciNet  MATH  Google Scholar 

  3. Moghimi Zand M, Ahmadian MT (2009) Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects. Commun Nonlinear Sci Numer Simul 14:1664–1678. https://doi.org/10.1016/j.cnsns.2008.05.009

    Article  Google Scholar 

  4. Ahmadian MT, Borhan H, Esmailzadeh E (2009) RETRACTED: dynamic analysis of geometrically nonlinear and electrostatically actuated micro-beams. Commun Nonlinear Sci Numer Simul 14:1627–1645. https://doi.org/10.1016/j.cnsns.2008.01.006

    Article  Google Scholar 

  5. Coutu RA, Kladitis PE, Starman LA, Reid JR (2004) A comparison of micro-switch analytic, finite element, and experimental results. Sens Actuators A Phys 115:252–258. https://doi.org/10.1016/j.sna.2004.03.019

    Article  Google Scholar 

  6. Mahdavi MH, Farshidianfar A, Tahani M et al (2008) A more comprehensive modeling of atomic force microscope cantilever. Ultramicroscopy 109:54–60. https://doi.org/10.1016/j.ultramic.2008.08.003

    Article  Google Scholar 

  7. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115. https://doi.org/10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  8. McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060

    Article  Google Scholar 

  9. Koiter WT (1969) Couple-stresses in the theory of elasticity, I and II. Philos Trans R Soc Lond B 67:17–44

    MATH  Google Scholar 

  10. Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  Google Scholar 

  11. Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11:385–414

    Article  MathSciNet  Google Scholar 

  12. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  13. Khorshidi MA, Shariati M (2016) Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J Braz Soc Mech Sci Eng 38:2607–2619

    Article  Google Scholar 

  14. Zeighampour H, Beni YT (2014) Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory. Phys E Low-dimens Syst Nanostruct 61:28–39

    Article  Google Scholar 

  15. Bhattacharya S, Das D (2019) Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory. Compos Struct 215:471–492. https://doi.org/10.1016/j.compstruct.2019.01.080

    Article  Google Scholar 

  16. Şimşek M (2010) Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys E Low-dimens Syst Nanostruct 43:182–191. https://doi.org/10.1016/j.physe.2010.07.003

    Article  Google Scholar 

  17. Kiani K (2010) Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys E Low-dimens Syst Nanostruct 42:2391–2401. https://doi.org/10.1016/j.physe.2010.05.021

    Article  Google Scholar 

  18. Şimşek M (2011) Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput Mater Sci 50:2112–2123. https://doi.org/10.1016/j.commatsci.2011.02.017

    Article  Google Scholar 

  19. Hosseini Hashemi S, Bakhshi Khaniki H (2017) Dynamic behavior of multi-layered viscoelastic nanobeam system embedded in a viscoelastic medium with a moving nanoparticle. J Mech 33:559–575. https://doi.org/10.1017/jmech.2016.91

    Article  MATH  Google Scholar 

  20. Hashemi SH, Khaniki HB (2018) Dynamic response of multiple nanobeam system under a moving nanoparticle. Alex Eng J 57:343–356. https://doi.org/10.1016/j.aej.2016.12.015

    Article  Google Scholar 

  21. Rahmani O, Norouzi S, Golmohammadi H, Hosseini SAH (2017) Dynamic response of a double, single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects. Mech Adv Mater Struct 24:1274–1291. https://doi.org/10.1080/15376494.2016.1227504

    Article  Google Scholar 

  22. Şimşek M (2010) Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. Int J Eng Sci 48:1721–1732. https://doi.org/10.1016/j.ijengsci.2010.09.027

    Article  MATH  Google Scholar 

  23. Jafari-Talookolaei RA, Abedi M, Şimşek M, Attar M (2016) Dynamics of a micro scale Timoshenko beam subjected to a moving micro particle based on the modified couple stress theory. J Vib Control 24:527–548. https://doi.org/10.1177/1077546316645237

    Article  MathSciNet  Google Scholar 

  24. Bakhshi Khaniki H, Hosseini-Hashemi S (2017) The size-dependent analysis of multilayered microbridge systems under a moving load/mass based on the modified couple stress theory. Eur Phys J Plus 132:200. https://doi.org/10.1140/epjp/i2017-11466-0

    Article  Google Scholar 

  25. Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48:1749–1761. https://doi.org/10.1016/j.ijengsci.2010.09.025

    Article  MathSciNet  MATH  Google Scholar 

  26. Hutchinson JR (2000) Shear coefficients for Timoshenko beam theory. J Appl Mech 68:87–92

    Article  Google Scholar 

  27. Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391. https://doi.org/10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  28. Stojanović V, Kozić P (2015) Vibrations and stability of complex beam systems. Springer, Berlin

    Book  Google Scholar 

  29. Şimşek M (2010) Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Compos Struct 92:2532–2546

    Article  Google Scholar 

  30. Ansari R, Gholami R, Darabi MA (2012) A nonlinear Timoshenko beam formulation based on strain gradient theory. J Mech Mater Struct 7:195–211

    Article  Google Scholar 

  31. Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59:2382–2399

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript have directly participated in the planning, execution and/or analysis of this study. Mostafa Hadian designed the study, performed the statistical analysis, interpreted the data and searched the literature. Keivan Torabi designed the study and interpreted the data. Shahram Hadian Jazi designed the study, performed the statistical analysis, interpreted the data and was a major contributor in writing the manuscript.

Corresponding author

Correspondence to Keivan Torabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The components of Eq. (29) are as follows:

$$\begin{aligned} {\mathbf{M}} = \left[ {\begin{array}{llll} {M_{1} } &\quad 0 &\quad 0 &\quad 0 \\ 0 &\quad {M_{2} } &\quad 0 &\quad 0 \\ 0 &\quad 0 & \quad {M_{3} } &\quad 0 \\ 0 &\quad 0 &\quad 0 &\quad {M_{4} } \\ \end{array} } \right], \hfill \\ {\mathbf{K}} = \left[ {\begin{array}{llll} {K_{11} } &\quad {K_{12} } &\quad {K_{13} } &\quad 0 \\ {K_{21} } &\quad {K_{22} } &\quad 0 &\quad 0 \\ {K_{31} } &\quad 0 &\quad {K_{33} } &\quad {K_{34} } \\ 0 &\quad 0 &\quad {K_{43} } &\quad {K_{44} } \\ \end{array} } \right] \hfill \\ \end{aligned}$$
(33)

and

$$K_{\text{nonlinear}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} { - \epsilon_{1} \varLambda_{1} p_{1}^{3} \mathop \int \limits_{0}^{1} \left( {\mathop \int \limits_{0}^{1} \frac{1}{2}\left( {\bar{W}_{1}^{\prime } } \right)^{2} {\text{d}}\xi } \right)\bar{W}_{1}^{\prime \prime } \bar{W}_{1} \left( \xi \right){\text{d}}\xi } \\ 0 \\ \end{array} } \\ { - \epsilon_{2} \varLambda_{2} p_{2}^{3} \mathop \int \limits_{0}^{1} \left( {\mathop \int \limits_{0}^{1} \frac{1}{2}\left( {\bar{W}_{2}^{\prime } } \right)^{2} {\text{d}}\xi } \right)\bar{W}_{2}^{\prime \prime } \bar{W}_{2} \left( \xi \right){\text{d}}\xi } \\ 0 \\ \end{array} } \right], F = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\mathop \int \limits_{0}^{1} \kappa \bar{W}_{1} \delta \left( {\xi - \tau } \right){\text{d}}\xi } \\ 0 \\ \end{array} } \\ 0 \\ 0 \\ \end{array} } \right]$$
(34)

where

$$\begin{aligned} {\text{M}}_{1} & = \beta_{1} \mathop \int \limits_{0}^{1} \bar{W}_{1} \left( \xi \right)\bar{W}_{1} \left( \xi \right){\text{d}}\xi , \quad {\text{M}}_{2} = \beta_{1} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{1} \left( \xi \right){\bar{{\varPsi }}}_{1} \left( \xi \right){\text{d}}\xi \\ {\text{M}}_{3} & = \beta_{2} \mathop \int \limits_{0}^{1} \bar{W}_{2} \left( \xi \right)\bar{W}_{2} \left( \xi \right){\text{d}}\xi , \quad {\text{M}}_{4} = \beta_{2} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{2} \left( \xi \right){\bar{{\varPsi }}}_{2} \left( \xi \right){\text{d}}\xi \\ K_{11} & = - \gamma_{1} {{\varLambda }}_{1} \mathop \int \limits_{0}^{1} \bar{W}_{1}^{\prime \prime } \left( \xi \right)\bar{W}_{1} \left( \xi \right){\text{d}}\xi + \eta_{1} \mathop \int \limits_{0}^{1} \bar{W}_{1}^{\prime \prime \prime \prime } \left( \xi \right)\bar{W}_{1} \left( \xi \right){\text{d}}\xi \\ &\quad+ {{\varGamma }}_{1} \mathop \int \limits_{0}^{1} \bar{W}_{1} \left( \xi \right)\bar{W}_{1} \left( \xi \right){\text{d}}\xi \\ K_{12} & = \gamma_{1} {{\varLambda }}_{1} \mathop \int \limits_{0}^{1} \bar{W}_{1} \left( \xi \right){\bar{{\varPsi }}}_{1}^{\prime } \left( \xi \right){\text{d}}\xi + \eta_{1} \mathop \int \limits_{0}^{1} \bar{W}_{1} \left( \xi \right){\bar{{\varPsi }}}_{1}^{\prime \prime \prime } {\text{d}}\xi ,\quad \\ K_{13} &= - {{\varGamma }}_{1} \mathop \int \limits_{0}^{1} \bar{W}_{2} \left( \xi \right)\bar{W}_{1} \left( \xi \right){\text{d}}\xi \\ K_{21} & = - \gamma_{1} {{\varLambda }}_{1}^{2} \mathop \int \limits_{0}^{1} \bar{W}_{1}^{\prime } \left( \xi \right){\bar{{\varPsi }}}_{1} \left( \xi \right){\text{d}}\xi - \eta_{1} {{\varLambda }}_{1} \mathop \int \limits_{0}^{1} \bar{W}_{1}^{\prime \prime \prime } \left( \xi \right){\bar{{\varPsi }}}_{1} \left( \xi \right){\text{d}}\xi \\ K_{22} & = - \epsilon_{1} {{\varLambda }}_{1} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{1}^{\prime \prime } \left( \xi \right){\bar{{\varPsi }}}_{1} \left( \xi \right){\text{d}}\xi + \gamma_{1} {{\varLambda }}_{1}^{2} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{1} \left( \xi \right){\bar{{\varPsi }}}_{1} \left( \xi \right){\text{d}}\xi \\ &\quad- \eta_{1} {{\varLambda }}_{1} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{1}^{\prime \prime } \left( \xi \right){\bar{{\varPsi }}}_{1} \left( \xi \right){\text{d}}\xi \\ K_{31} &= - {{\varGamma }}_{2} \mathop \int \limits_{0}^{1} \bar{W}_{1} \left( \xi \right)\bar{W}_{2} \left( \xi \right){\text{d}}\xi \\ K_{33} & = - \gamma_{2} {{\varLambda }}_{2} \mathop \int \limits_{0}^{1} \bar{W}_{2}^{\prime \prime } \left( \xi \right)\bar{W}_{2} \left( \xi \right){\text{d}}\xi + \eta_{2} \mathop \int \limits_{0}^{1} \bar{W}_{2}^{\prime \prime \prime \prime } \left( \xi \right)\bar{W}_{2} \left( \xi \right){\text{d}}\xi \\ & \quad + {{\varGamma }}_{2} \mathop \int \limits_{0}^{1} \bar{W}_{2} \left( \xi \right)\bar{W}_{2} \left( \xi \right){\text{d}}\xi \\ K_{34} & = \gamma_{2} {{\varLambda }}_{2} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{2}^{\prime } \left( \xi \right)\bar{W}_{2} \left( \xi \right){\text{d}}\xi + \eta_{2} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{2}^{\prime \prime \prime } \left( \xi \right)\bar{W}_{2} \left( \xi \right){\text{d}}\xi \\ K_{43} & = - \gamma_{2} {{\varLambda }}_{2}^{2} \mathop \int \limits_{0}^{1} \bar{W}_{2}^{\prime } \left( \xi \right){\bar{{\varPsi }}}_{2} \left( \xi \right){\text{d}}\xi - \eta_{2} {{\varLambda }}_{2} \mathop \int \limits_{0}^{1} \bar{W}_{2}^{\prime \prime \prime } \left( \xi \right){\bar{{\varPsi }}}_{2} \left( \xi \right){\text{d}}\xi \\ K_{44} & = - \epsilon_{2} {{\varLambda }}_{2} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{2}^{\prime \prime } \left( \xi \right){\bar{{\varPsi }}}_{2} \left( \xi \right){\text{d}}\xi + \gamma_{2} {{\varLambda }}_{2}^{2} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{2} \left( \xi \right){\bar{{\varPsi }}}_{2} \left( \xi \right)d\xi \\ &\quad- \eta_{2} {{\varLambda }}_{2} \mathop \int \limits_{0}^{1} {\bar{{\varPsi }}}_{2}^{\prime \prime } \left( \xi \right){\bar{{\varPsi }}}_{2} \left( \xi \right){\text{d}}\xi \\ \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadian, M., Torabi, K. & Hadian Jazi, S. Nonlinear vibration analysis of an elastically connected double-non-classical Timoshenko microbeam subject to moving particle based on the modified couple stress theory. J Braz. Soc. Mech. Sci. Eng. 42, 246 (2020). https://doi.org/10.1007/s40430-020-02336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02336-z

Keywords

Navigation