Skip to main content
Log in

Heat transfer characteristics of an inverse diffusion flame with induced swirl

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The flame shapes and heat transfer characteristics of methane swirling inverse diffusion flame jet are studied experimentally in an inverse diffusion flame burner. The twisted tape of 15 mm pitch (corresponding to the twist ratio of 2.5 and swirl number of 0.62) is used to create the swirl in the flame jet. The influence of twisted tape at an air jet Reynolds number varying from 1500 to 3000, equivalence ratio varying from 0.4 to 1.4 and burner surface to impingement plate distance of 10–100 mm, is studied. The heat transfer characteristics from an IDF burner are studied through an evaluation of the average heat flux distribution and its coefficient of variance for the four distinct areas on an impingement plate. Results show that the swirl augments the heat flux distribution by up to 480% for slightly richer than stoichiometric flames. Furthermore, the impact of swirling is observed to boost the uniformity of heat flux distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

Re:

Reynolds number of air jet

\(\dot{m}\) :

Mass flow rate of air (kg/s)

d :

Diameter of air jet (m)

k :

Thermal conductivity (W/m K)

\(\bar{q}^{\prime \prime }\) :

Average heat flux (W/m2)

t :

Time (s)

T :

Temperature (K)

Z :

Quartz plate thickness (mm)

p :

Twisted tape pitch (mm)

w :

Twisted tape width (mm)

S:

Swirl number

N :

Total number of pixels

\(E_{{q^{\prime \prime } }}\) :

Enhancement factor for average heat flux

\(E_{\text{COV}}\) :

Enhancement factor for COV

stoic:

Stoichiometric

act:

Actual

i :

Initial

-:

Average

α :

Thermal diffusivity (m2/s)

ϕ :

Equivalence ratio

µ :

Absolute viscosity of air (Pa s)

σ std :

Standard deviation

A:

Air

F:

Fuel

RSS:

Root sum of squares

IDF:

Inverse diffusion flame

TR:

Twist ratio

COV:

Coefficient of variance

H:

Distance between burner surface to target plate

References

  1. Chander Subhash, Ray Anjan (2005) Flame impingement heat transfer: a review. Energy Convers Manag 46:2803–2837

    Article  Google Scholar 

  2. Wu KT (1984) The comprehensive structure of normal and inverse diffusion flame. PhD Thesis, The Ohio State University

  3. Sze LK, Cheung CS, Leung CW (2006) Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design. Combust Flame 144:237–248

    Article  Google Scholar 

  4. Mikofski Mark A, Williams Timothy C, Shaddix Christopher R, Belvins Linda G (2006) Flame height measurement of laminar inverse diffusion flames. Combust Flame 146:63–72

    Article  Google Scholar 

  5. Mahesh S, Mishra DP (2010) Flame structure of LPG-air inverse diffusion flame in a backstep burner. Fuel 89:2145–2148

    Article  Google Scholar 

  6. Zhen HS, Choy YS, Leung CW, Cheung CS (2011) Effect of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Appl Energy 88:2917–2924

    Article  Google Scholar 

  7. Dong LL, Cheung CS, Leung CW (2011) Combustion optimization of a port array inverse diffusion flame jet. Energy 36:2834–2846

    Article  Google Scholar 

  8. Choy YS, Zhen HS, Leung CW, Li HB (2012) Pollutant emission and noise radiation from open and impinging inverse diffusion flames. Appl Energy 91:82–89

    Article  Google Scholar 

  9. Miao J, Leung CW, Cheung CS, Huang ZH, Zhen HS (2016) Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame. Energy 104:284–294

    Article  Google Scholar 

  10. Hindasgeri Vijaykumar, Vedula Rajendra P, Prabhu Siddini V (2015) Heat transfer distribution for three interacting methane–air premixed impinging flame jets. Int J Heat Mass Transf 88:914–925

    Article  Google Scholar 

  11. Hindasgeri Vijaykumar, Vedula Rajendra P, Prabhu Siddini V (2015) Heat transfer distribution of swirling jet impinging on a flat plate using twisted tapes. Int J Heat Mass Transf 91:1128–1139

    Article  Google Scholar 

  12. Hindasgeri Vijaykumar, Kuntikana Pramod, Vedula Rajendra P, Prabhu Siddini V (2015) An experimental and numerical investigation of heat transfer distribution of perforated plate burner flames impinging on a flat plate. Int J Therm Sci 94:156–169

    Article  Google Scholar 

  13. Kuntikana P, Prabhu SV (2017) Effect of mixture composition on heat transfer characteristics of impinging methane-air flame jets of tube burner equipped with twisted tapes. Int J Therm Sci 111:409–422

    Article  Google Scholar 

  14. Chander Subhas, Ray Anjan (2007) Heat transfer characteristics of three interacting methane/air flame jets impinging on a flat surface. Int J Heat Mass Transf 50:640–653

    Article  Google Scholar 

  15. Kuntikana P, Parbhu SV (2016) Isothermal air jet and premixed flame jet impingement: heat transfer characteristics and comparison. Int J Therm Sci 100:401–415

    Article  Google Scholar 

  16. Sze LK, Cheung CS, Leung CW (2004) Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports. Int J Heat Mass Transf 47:3119–3129

    Article  Google Scholar 

  17. Dong LL, Cheung CS, Leung CW (2013) Characterization of impinging region from an impinging inverse diffusion flame jet. Int J Heat Mass Transf 56:360–369

    Article  Google Scholar 

  18. Dong LL, Cheung CS, Leung CW (2013) Heat transfer optimization of an impinging port-array inverse diffusion flame jet. Energy 49:182–192

    Article  Google Scholar 

  19. Syred N, Beer JM (1974) Combustion in swirling flows: a review. Combust Flame 23:143–201

    Article  Google Scholar 

  20. Zhen HS, Leung CW, Cheung CS (2010) Thermal and emission characteristics of a turbulent swirling inverse diffusion flame. Int J Heat Mass Transf 53:902–909

    Article  Google Scholar 

  21. Zhen HS, Leung CW, Cheung CS (2011) A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames. Energy Convers Manag 52:1263–1271

    Article  Google Scholar 

  22. Zhen HS, Cheung CS, Leung CW, Li HB (2013) Thermal and heat transfer behaviors of an inverse diffusion flame with induced swirl. Fuel 103:212–219

    Article  Google Scholar 

  23. Kotb A, Saad H (2016) A comparison of the thermal and emission characteristics of co and counter swirl inverse diffusion flames. Int J Therm Sci 109:362–373

    Article  Google Scholar 

  24. Patel Vipul, Shah Rupesh (2018) Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Appl Therm Eng 137:377–385

    Article  Google Scholar 

  25. Moffat RJ (1985) Using uncertainty analysis in the planning of an experiment. Trans ASME J Fluids Eng 107:173–178

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Badiger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Mario Eduardo Santos Martins, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badiger, S., Anil, T.R., Hindasageri, V. et al. Heat transfer characteristics of an inverse diffusion flame with induced swirl. J Braz. Soc. Mech. Sci. Eng. 42, 252 (2020). https://doi.org/10.1007/s40430-020-02330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02330-5

Keywords

Navigation