Skip to main content
Log in

Flow boiling heat transfer of R134a in a 500 µm ID tube

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The present paper presents experimental results for the heat transfer coefficient during flow boiling of refrigerant R134a in a circular channel with internal diameter of 500 µm. The experimental database covers mass velocities ranging from 200 to 800 kg/m2 s, heat fluxes up to 100 kW/m2 and vapor qualities from 0.02 to 0.75 for a saturation temperature of 40 °C. The experimental data were parametrically analyzed and the effects of the experimental parameters (heat flux, mass velocity and vapor quality) identified. Additionally, images of two-phase flow were obtained through a high-speed camera and employed to identify the flow patterns. A flow pattern map was built and compared to prediction methods from the literature. In general, the heat transfer coefficient increased with increasing mass velocity and heat flux. The experimental data were compared against seven flow boiling predictive methods from the literature. Sun and Mishima (Int J Heat Mass Transf 52(23):5323–5329, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041) and Kanizawa et al. (Int J Heat Mass Transf 93:566–583, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083) methods provided the best prediction of the experimental results with only Kanizawa et al. (2016) capturing the experimental heat transfer trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(adapted from Aguiar and Ribatski [45])

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

D :

Diameter (m)]

f :

Friction factor (–)

G :

Mass velocity (kg/m2 s)

h :

Enthalpy (J/kg)

I :

Electrical current (A)

L :

Length (m)

\(\dot{m}\) :

Mass flow rate (kg/s)

Nu:

Nusselt number (dimensionless)

\(\dot{q}\) :

Heat flux (W/m2)

p :

Pressure (Pa)

\(\dot{P}\) :

Electric power (W)

Re:

Reynolds number (dimensionless)

T :

Temperature (°C)

V :

Voltage (V)

x :

Vapor quality (–)

α :

Heat transfer coefficient (W/m2 K)

λ :

Empirical coefficient (dimensionless)

ρ :

Density (kg m−3)

σ :

Heat losses (dimensionless)

\(\Delta p\) :

Pressure drop (Pa)

ω :

Empirical coefficient (dimensionless)

\(1\emptyset\) :

Single-phase

\(2\emptyset\) :

Two-phase

diff:

Differential (Pressure)

f:

Fluid

fric:

Frictional

GO:

Two-phase mixture as gas

\(i\) :

Discrete index position

Int:

Internal

liq:

Liquid

LO:

Two-phase mixture as liquid

out:

Outlet

pre:

Preheater

sat:

Saturation

tc:

Thermocouple

ts:

Test section

References

  1. Sempértegui-Tapia DF, Ribatski G (2017) Two-phase frictional pressure drop in horizontal micro-scale channels: experimental data analysis and prediction method development. Int J Refrig 79:143–163. https://doi.org/10.1016/j.ijrefrig.2017.03.024

    Article  Google Scholar 

  2. Do Nascimento FJ, Leão HLSL, Ribatski G (2013) An experimental study on flow boiling heat transfer of R134a in a micro channel-based heat sink. Exp Therm Fluid Sci 45:117–127. https://doi.org/10.1016/j.expthermflusci.2012.10.014

    Article  Google Scholar 

  3. Cheng L, Xia G (2017) Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels. Int J Heat Mass Transf 108:97–127. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.003

    Article  Google Scholar 

  4. Thome JR (2006) The new frontier in heat transfer: microscale and nanoscale technologies. Heat Tranf Eng. https://doi.org/10.1080/01457630600845283

    Article  Google Scholar 

  5. Mudawar I (2013) Recent advances in high-flux, two-phase thermal management. J Therm Sci Eng Appl 5(2):021012. https://doi.org/10.1115/1.4023599

    Article  Google Scholar 

  6. Chauhan A, Kandlikar SG (2019) Characterization of a dual taper thermosiphon loop for CPU cooling in data centers. Appl Therm Eng 146:450–458. https://doi.org/10.1016/j.applthermaleng.2018.10.010

    Article  Google Scholar 

  7. Sempértegui Tapia DF (2017) Análise experimental do efeito da geometria da seção transversal e do desempenho de fluidos de reduzido GWP na ebulição convectiva em canais de dimensões reduzidas. Doctoral dissertation, Universidade de São Paulo. https://doi.org/10.11606/t.18.2017.tde-02022017-152135

  8. Agostini B, Fabbri M, Park JE, Wojtan L, Thome JR, Michel B (2007) State of the art of high heat flux cooling technologies. Heat Transf Eng 28(4):258–281. https://doi.org/10.1080/01457630601117799

    Article  Google Scholar 

  9. Tibiriçá CB, Ribatski G (2014) Flow patterns and bubble departure fundamental characteristics during flow boiling in microscale channels. Exp Therm Fluid Sci 59:152–165. https://doi.org/10.1016/j.expthermflusci.2014.02.017

    Article  Google Scholar 

  10. Consolini L, Ribatski G, Thome JR, Zhang W, Xu J (2007) Heat transfer in confined forced-flow boiling. Heat Transf Eng 28(10):826–833. https://doi.org/10.1080/01457630701378226

    Article  Google Scholar 

  11. Tibirica CB, Czelusniak LE, Ribatski G (2015) Critical heat flux in a 0.38 mm microchannel and actions for suppression of flow boiling instabilities. Exp Therm Fluid Sci 67:48–56. https://doi.org/10.1016/j.expthermflusci.2015.02.020

    Article  Google Scholar 

  12. Tibiriçá CB, Ribatski G (2010) Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube. Int J Heat Mass Transf 53(11–12):2459–2468. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.038

    Article  Google Scholar 

  13. Lowdermilk WH, Lanzo CD, Siegel BL (1958) Investigation of boiling burnout and flow stability for water flowing in tubes. National Advisory Committee for Aeronautics

  14. Szczukiewicz S, Borhani N, Thome JR (2013) Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 × 100 μm2 silicon multi-microchannels. Int J Refrig 36(2):402–413. https://doi.org/10.1016/j.ijrefrig.2012.11.014

    Article  Google Scholar 

  15. Consolini L (2008) Convective boiling heat transfer in a single micro-channel. Doctoral thesis. Lausanne, EPFL, Switzerland. https://doi.org/10.5075/epfl-thesis-4024

  16. Kandlikar SG, Willistein DA, Borrelli J (2005) Experimental evaluation of pressure drop elements and fabricated nucleation sites for stabilizing flow boiling in minichannels and microchannels. In: ASME 3rd international conference on microchannels and minichannels. American Society of Mechanical Engineers Digital Collection. pp 115–124. https://doi.org/10.1115/icmm2005-75197

  17. Tibirica CB, Ribatski G (2013) Flow boiling in micro-scale channels–synthesized literature review. Int J Refrig 36(2):301–324. https://doi.org/10.1016/j.ijrefrig.2012.11.019

    Article  Google Scholar 

  18. Kanizawa FT, Tibiriçá CB, Ribatski G (2016) Heat transfer during convective boiling inside microchannels. Int J Heat Mass Transf 93:566–583. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.083

    Article  Google Scholar 

  19. Tran TN, Wambsganss MW, France DM (1996) Small circular-and rectangular channel boiling with two refrigerants. Int J Multiph Flow 22(3):485–498. https://doi.org/10.1016/0301-9322(96)00002-X

    Article  MATH  Google Scholar 

  20. Sun L, Mishima K (2009) An evaluation of prediction methods for saturated flow boiling heat transfer in mini-channels. Int J Heat Mass Transf 52(23):5323–5329. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.041

    Article  MATH  Google Scholar 

  21. Li W, Wu Z (2010) A general correlation for evaporative heat transfer in micro/minichannels. Int J Heat Mass Transf 53(9):1778–1787. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.059

    Article  Google Scholar 

  22. Kim SM, Mudawar I (2013) Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels–Part II. Two-phase heat transfer coefficient. Int J Heat Mass Transf 64:1239–1256. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.014

    Article  Google Scholar 

  23. Thome JR, Dupont V, Jacobi AM (2004) Heat transfer model for evaporation in microchannels. Part I: presentation of the model. Int J Heat Mass Transf 47(14–16):3375–3385. https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.006

    Article  MATH  Google Scholar 

  24. Costa-Patry E, Thome JR (2013) Flow pattern-based flow boiling heat transfer model for microchannels. Int J Refrig 36(2):414–420. https://doi.org/10.1016/j.ijrefrig.2012.12.006

    Article  Google Scholar 

  25. Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329

    Article  Google Scholar 

  26. Churchill SW, Usagi R (1972) A general expression for the correlation of rates of transfer and other phenomena. AIChE J 18(6):1121–1128. https://doi.org/10.1002/aic.690180606

    Article  Google Scholar 

  27. Stephan K, Abdelsalam M (1980) Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transf 23(1):73–87. https://doi.org/10.1016/0017-9310(80)90140-4

    Article  Google Scholar 

  28. Dittus FW, Boelter LMK (1930) University of California publications on engineering, vol 2. University of California publications in Engineering, Berkeley, p 371

    Google Scholar 

  29. Cioncolini A, Thome JR (2011) Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow. Int J Heat Fluid Flow 32(4):805–817. https://doi.org/10.1016/j.ijheatfluidflow.2011.05.006

    Article  Google Scholar 

  30. Magnini M, Thome JR (2017) An updated three-zone heat transfer model for slug flow boiling in microchannels. Int J Multiph Flow 91:296–314. https://doi.org/10.1016/j.ijmultiphaseflow.2017.01.015

    Article  MathSciNet  Google Scholar 

  31. Consolini L, Thome JR (2009) Micro-channel flow boiling heat transfer of R-134a, R-236fa, and R-245fa. Microfluidics Nanofluidics 6(6):731–746. https://doi.org/10.1007/s10404-008-0348-7

    Article  Google Scholar 

  32. Basu S, Ndao S, Michna GJ, Peles Y, Jensen MK (2011) Flow boiling of R134a in circular microtubes—Part I: study of heat transfer characteristics. J Heat Transf. https://doi.org/10.1115/1.4003159

    Article  Google Scholar 

  33. In S, Jeong S (2009) Flow boiling heat transfer characteristics of R123 and R134a in a micro-channel. Int J Multiph Flow 35(11):987–1000. https://doi.org/10.1016/j.ijmultiphaseflow.2009.07.003

    Article  Google Scholar 

  34. Saitoh S, Daiguji H, Hihara E (2005) Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes. Int J Heat Mass Transf 48(23–24):4973–4984. https://doi.org/10.1016/j.ijheatmasstransfer.2005.03.035

    Article  MATH  Google Scholar 

  35. Lazarek GM, Black SH (1982) Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int J Heat Mass Transf 25(7):945–960. https://doi.org/10.1016/0017-9310(82)90070-9

    Article  Google Scholar 

  36. Kandlikar SG, Balasubramanian P (2004) An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels. Heat Transf Eng 25(3):86–93. https://doi.org/10.1080/01457630490280425

    Article  Google Scholar 

  37. Zhang W, Hibiki T, Mishima K (2004) Correlation for flow boiling heat transfer in mini-channels. Int J Heat Mass Transf 47(26):5749–5763. https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.034

    Article  Google Scholar 

  38. Warrier GR, Dhir VK, Momoda LA (2002) Heat transfer and pressure drop in narrow rectangular channels. Exp Therm Fluid Sci 26(1):53–64. https://doi.org/10.1016/S0894-1777(02)00107-3

    Article  Google Scholar 

  39. Liu Z, Winterton RHS (1991) A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int J Heat Mass Transf 34(11):2759–2766. https://doi.org/10.1016/0017-9310(91)90234-6

    Article  Google Scholar 

  40. Bertsch SS, Groll EA, Garimella SV (2009) A composite heat transfer correlation for saturated flow boiling in small channels. Int J Heat Mass Transf 52(7–8):2110–2118. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.022

    Article  Google Scholar 

  41. Lee J, Mudawar I (2005) Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II—heat transfer characteristics. Int J Heat Mass Transf 48(5):941–955. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.019

    Article  Google Scholar 

  42. Tibiriçá CB, Ribatski G, Thome JR (2012) Saturated flow boiling heat transfer and critical heat flux in small horizontal flattened tubes. Int J Heat Mass Transf 55(25–26):7873–7883. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.017

    Article  Google Scholar 

  43. Tibiriçá CB, Rocha DM, SuethJr ILS, Bochio G, Shimizu GKK, Barbosa MC, dos Santos Ferreira S (2017) A complete set of simple and optimized correlations for microchannel flow boiling and two-phase flow applications. Appl Therm Eng 126:774–795. https://doi.org/10.1016/j.applthermaleng.2017.07.161

    Article  Google Scholar 

  44. Ribatski G, Wojtan L, Thome JR (2006) An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Exp Therm Fluid Sci 31(1):1–19. https://doi.org/10.1016/j.expthermflusci.2006.01.006

    Article  Google Scholar 

  45. Aguiar GM, Ribatski G (2019) An experimental study on flow boiling in microchannels under heating pulses and a methodology for predicting the wall temperature fluctuations. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2019.113851

    Article  Google Scholar 

  46. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16(2):359–368

    Google Scholar 

  47. Churchill SW (1977) Friction-factor equation spans all fluid-flow regimes. Chem Eng 84(24):91–92

    Google Scholar 

  48. Taylor BN, Kuyatt CE (1994) Guidelines for evaluating and expressing the uncertainty of NIST measurement results. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Gaithersburg, MD, pp 1–25

  49. Abernethy RB, Thompson JW (1973) Handbook of uncertainty in gas turbine measurements. Arnold Engineering Development Center, Arnold Air Force Station

    Book  Google Scholar 

  50. Ong CL, Thome JR (2011) Macro-to-microchannel transition in two-phase flow: part 2–flow boiling heat transfer and critical heat flux. Exp Therm Fluid Sci 35(6):873–886. https://doi.org/10.1016/j.expthermflusci.2010.12.003

    Article  Google Scholar 

  51. Felcar HOM, Ribatski G, Saiz-Jabardo JM (2007) A gas–liquid flow pattern predictive method for macro-and-mini-scale round channels. In: Proceedings of the 10th UK heat transfer conference. Edinburgh, Scotland

  52. Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas–liquid flow. AIChE J 22(1):47–55. https://doi.org/10.1002/aic.690220105

    Article  Google Scholar 

  53. Sempértegui-Tapia DF, Ribatski G (2017) Flow boiling heat transfer of R134a and low GWP refrigerants in a horizontal micro-scale channel. Int J Heat Mass Transf 108:2417–2432. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.036

    Article  Google Scholar 

  54. Qu W, Mudawar I (2004) Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. Int J Heat Mass Transf 47(10–11):2045–2059. https://doi.org/10.1016/j.ijheatmasstransfer.2003.12.006

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge grants given by FAPESP (São Paulo Research Foundation of Brazil) under Contract Number 2016/09509-1, CNPq (National Counsel of Technological and Scientific Development of Brazil) under Contract Numbers 141946/2017-2 and 305673/2017-3 and CAPES (Coordination of the Improvement in Higher Level Personnel of Brazil). The technical support given to this investigation by Mr. José Roberto Bogni and Mr. Jorge Nicolau dos Santos is also appreciated and recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erivelto dos Santos Filho.

Additional information

Technical Editor: Jader Barbosa Jr., PhD.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Filho, E., Aguiar, G.M. & Ribatski, G. Flow boiling heat transfer of R134a in a 500 µm ID tube. J Braz. Soc. Mech. Sci. Eng. 42, 254 (2020). https://doi.org/10.1007/s40430-020-02325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02325-2

Keywords

Navigation