Skip to main content
Log in

Numerical simulation of the effect of crater morphology for the prediction of surface roughness on electrical discharge textured Ti6Al4V

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Extensive efforts (mathematical, numerical, and analytical) have been earlier tried to replicate the EDM process in its true nature. In the present work, the surface roughness (Ra) of the electrical discharge textured Ti6Al4V has got mathematically modeled. The parametric influence on the morphology of the developed craters got elucidated at distinct process conditions. The influential factors, viz. current (I, 2–10 A) and pulse on time (Ton, 100–300 μs), were varied to conduct a full factorial set of simulations and experimentations, keeping voltage (V, 30 V) as a constant. The I and V possessed dominant influence for material removal along the radial and axial directions (respectively), whereas the impact of Ton remained uniform in both the directions. Besides, two distinct considerations (based on the positioning of multi-overlapping craters) for prediction of Ra got proposed; the secondary craters superimposing with the primary along its circumference were found to fetch convincing results [with a maximum possible error (average) of 16%]. Simulation and experimentation results were compared using Ra data, crater morphological images, and radius to depth ratio (Rrd) plots. The outcomes were in close concordance with acceptable tolerances. The variation got attributed to the uncontrollable/disregarded factors (formation of recast layer and short circuit ensuing debris interference), prevalent in the case of in situ work environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Dilip DG, Ananthan SP, Panda S, Mathew J (2019) Numerical simulation of the influence of fluid motion in mushy zone during micro-EDM on the crater surface profile of Inconel 718 alloy. J Braz Soc Mech Sci Eng 41:107. https://doi.org/10.1007/s40430-019-1595-0

    Article  Google Scholar 

  2. Das S, Klotz M, Klocke F (2003) EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. J Mater Process Technol 142:434–451. https://doi.org/10.1016/S0924-0136(03)00624-1

    Article  Google Scholar 

  3. Singh A, Ghosh A (1999) A thermo-electric model of material removal during electric discharge machining. Int J Mach Tools Manuf 39:669–682. https://doi.org/10.1016/S0890-6955(98)00047-9

    Article  Google Scholar 

  4. Tariq Jilani S, Pandey PC (1982) Analysis and modelling of edm parameters. Precis Eng 4:215–221. https://doi.org/10.1016/0141-6359(82)90011-3

    Article  Google Scholar 

  5. Tariq Jilani S, Pandey PC (1983) An analysis of surface erosion in electrical discharge machining. Wear 84:275–284. https://doi.org/10.1016/0043-1648(83)90269-7

    Article  Google Scholar 

  6. van Dijck FS, Dutré WL (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. J Phys D Appl Phys 7:316. https://doi.org/10.1088/0022-3727/7/6/316

    Article  Google Scholar 

  7. Yang X, Guo J, Chen X, Kunieda M (2011) Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precis Eng 35:51–57. https://doi.org/10.1016/j.precisioneng.2010.09.005

    Article  Google Scholar 

  8. DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. J Appl Phys 66:4095–4103. https://doi.org/10.1063/1.343994

    Article  Google Scholar 

  9. Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II. The anode erosion model. J Appl Phys 66:4104–4111. https://doi.org/10.1063/1.343995

    Article  Google Scholar 

  10. Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Process 12:45–56. https://doi.org/10.1016/j.jmapro.2010.02.001

    Article  Google Scholar 

  11. Jithin S, Bhandarkar UV, Joshi SS (2017) Analytical simulation of random textures generated in electrical discharge texturing. J Manuf Sci Eng 139:111002. https://doi.org/10.1115/1.4037322

    Article  Google Scholar 

  12. Izquierdo B, Sánchez JA, Plaza S, Pombo I, Ortega N (2009) A numerical model of the EDM process considering the effect of multiple discharges. Int J Mach Tools Manuf 49:220–229. https://doi.org/10.1016/j.ijmachtools.2008.11.003

    Article  Google Scholar 

  13. Izquierdo B, Plaza S, Sánchez JA, Pombo I, Ortega N (2012) Numerical prediction of heat affected layer in the EDM of aeronautical alloys. Appl Surf Sci 259:780–790. https://doi.org/10.1016/j.apsusc.2012.07.124

    Article  Google Scholar 

  14. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2009) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40:316–323. https://doi.org/10.1007/s00170-007-1327-y

    Article  Google Scholar 

  15. Descoeudres A (2006) Characterization of electrical discharge machining plasmas. https://doi.org/10.5075/epfl-thesis-354

  16. Ashok Raj J, Pottirayil A, Kailas SV (2016) Dry sliding wear behavior of Ti–6Al–4V pin against SS316L disk at constant contact pressure. J Tribol 139:021603. https://doi.org/10.1115/1.4033363

    Article  Google Scholar 

  17. Harcuba P, Bačáková L, Stráský J, Bačáková M, Novotná K, Janeček M (2012) Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J Mech Behav Biomed Mater 7:96–105. https://doi.org/10.1016/j.jmbbm.2011.07.001

    Article  Google Scholar 

  18. Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V. J Mater Process Technol 166:188–192. https://doi.org/10.1016/j.jmatprotec.2004.08.012

    Article  Google Scholar 

  19. Çaydaş U, Hasçalik A (2008) Modeling and analysis of electrode wear and white layer thickness in die-sinking EDM process through response surface methodology. Int J Adv Manuf Technol 38:1148–1156. https://doi.org/10.1007/s00170-007-1162-1

    Article  Google Scholar 

  20. Shen Y, Liu Y, Zhang Y, Tan B, Ji R, Cai B et al (2014) Determining the energy distribution during electric discharge machining of Ti–6Al–4V. Int J Adv Manuf Technol 70:11–17. https://doi.org/10.1007/s00170-013-5194-4

    Article  Google Scholar 

  21. Hasçalık A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti–6Al–4V). Appl Surf Sci 253:9007–9016. https://doi.org/10.1016/j.apsusc.2007.05.031

    Article  Google Scholar 

  22. Gu L, Li L, Zhao W, Rajurkar KP (2012) Electrical discharge machining of Ti6Al4V with a bundled electrode. Int J Mach Tools Manuf 53:100–106. https://doi.org/10.1016/j.ijmachtools.2011.10.002

    Article  Google Scholar 

  23. Khan AA (2011) Role of heat transfer on process characteristics during electrical discharge machining. IntechopenCom, New York

    Google Scholar 

  24. Ming W, Zhang G, Li H, Guo J, Zhang Z, Huang Y et al (2014) A hybrid process model for EDM based on finite-element method and Gaussian process regression. Int J Adv Manuf Technol 74:1197–1211. https://doi.org/10.1007/s00170-014-5989-y

    Article  Google Scholar 

  25. Wu H, Ma J, Meng Q, Jahan MP, Alavi F (2018) Numerical modeling of electrical discharge machining of Ti–6Al–4V. Proc Manuf 26:359–371. https://doi.org/10.1016/j.promfg.2018.07.044

    Article  Google Scholar 

  26. Joshi SN, Pande SS (2009) Development of an intelligent process model for EDM. Int J Adv Manuf Technol 45:300–317. https://doi.org/10.1007/s00170-009-1972-4

    Article  Google Scholar 

  27. Shabgard M, Oliaei SNB, Seyedzavvar M, Najadebrahimi A (2011) Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process. J Mech Sci Technol 25:3173–3183. https://doi.org/10.1007/s12206-011-0905-y

    Article  Google Scholar 

  28. Descoeudres A, Hollenstein C, Wälder G, Perez R (2005) Time-resolved imaging and spatially-resolved spectroscopy of electrical discharge machining plasma. J Phys D Appl Phys 38:4066–4073. https://doi.org/10.1088/0022-3727/38/22/009

    Article  Google Scholar 

  29. Singh H (2012) Experimental study of distribution of energy during EDM process for utilization in thermal models. Int J Heat Mass Transf 55:5053–5064. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.004

    Article  Google Scholar 

  30. Shabgard M, Ahmadi R, Seyedzavvar M, Oliaei SNB (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tools Manuf 65:79–87. https://doi.org/10.1016/j.ijmachtools.2012.10.004

    Article  Google Scholar 

  31. Kuriachen B, Varghese A, Somashekhar KP, Panda S, Mathew J (2015) Three-dimensional numerical simulation of microelectric discharge machining of Ti–6Al–4V. Int J Adv Manuf Technol 79:147–160. https://doi.org/10.1007/s00170-015-6794-y

    Article  Google Scholar 

  32. Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math Comput Model 47:1217–1237. https://doi.org/10.1016/j.mcm.2007.05.016

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their humble obligations to the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for the research grant sanctioned for the project (Ref. No. ECR/2016/001929) through the aid of which this initiative was undertaken. The authors also thank Dr. Arun Tom Mathew, Associate Professor, Vellore Institute of Technology Vellore, Tamil Nadu, India for the support rendered in carrying out the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Kuriachen.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, J.T., Mathew, J. & Kuriachen, B. Numerical simulation of the effect of crater morphology for the prediction of surface roughness on electrical discharge textured Ti6Al4V. J Braz. Soc. Mech. Sci. Eng. 42, 248 (2020). https://doi.org/10.1007/s40430-020-02321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02321-6

Keywords

Navigation