Skip to main content
Log in

Multi-spark model for predicting surface roughness of electrical discharge textured surfaces

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Several models in the literature predict the average surface roughness (Ra) of electrical discharge textured surfaces using either a single-spark simulation for roughness estimation, or a multi-spark simulation with a uniform or a symmetric distribution of sparks. This paper presents an improved approach for surface roughness prediction, by generating surface profiles with the stochastic distribution of sparks with respect to the following: (i) location, (ii) energy level, and (iii) time. In addition, the formulation for single-spark adopts better assumptions, such as a Gaussian heat flux distribution for sparks, temperature dependency of material properties, and the operating parameter-dependent variation of factors, such as spark radius, cathode energy fraction, and plasma flushing efficiency. Surface profiles are simulated by the multi-spark model, considering the stochastic distribution of crater profiles, which are evaluated by the single-spark model. Unique profiles are obtained for each run of the multi-spark model, for a particular parameter combination. They vary in location, size, and shape of individual peaks and valleys, among each other due to this stochastic distribution of sparks. This variation among profiles agrees well with the variable distribution of peaks and valleys in actual EDTed surface profiles. It is observed that an increase in discharge current and pulse on-time leads to a lesser number of peaks and valleys, and a higher peak-to-valley height on the surface profile, due to increase in individual crater dimensions. The adoption of the more realistic assumptions in current model reduces the average Ra prediction error to 11.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

T :

(Temperature)

T 0 :

Ambient temperature

r :

Radial coordinate

z :

Axial coordinate

t :

(Time)

ρ :

Density of work material

C p :

Specific heat of work material

K T :

Thermal conductivity of work material

α :

Thermal diffusivity of work material

q(r):

Gaussian heat flux distribution

q 0 :

Heat flux intensity at the center of spark

F c :

Cathode energy fraction

U :

Gap voltage

I :

Discharge current

r g :

Spark radius

t on :

Discharge duration

E :

Spark energy

J 0 :

Bessel function of zeroth order

J 1 :

Bessel function of first order

λ :

Dummy variable

χ :

Variable defined in Eq. (14)

erfc :

Error function

D C ∣ a :

Adjusted crater depth

R C ∣ a :

Adjusted crater radius

D C ∣ t :

Theoretical crater depth

R C ∣ t :

Theoretical crater radius

PFE :

Plasma flushing efficiency

L :

Work surface

P :

Set of points on work surface L

r1, r2, ⋯, rn :

Randomly selected points from P

μ :

(Mean)

σ :

(Standard deviation)

Z(x):

Profile height function

Z :

Set of z-coordinate values of points on surface profile

R a :

Average surface roughness or arithmetic mean deviation

R max :

Maximum peak-to-valley height

P c :

Peak density

l :

Sampling length

References

  1. Aspinwall DK, Wise MLH, Stout KJ et al (1992) Electrical discharge texturing. Int J Mach Tools Manuf 32:183–193. https://doi.org/10.1016/0890-6955(92)90077-T

    Article  Google Scholar 

  2. DiBitonto D, Eubank P, Patel MR, Barrufet MA (1989) Theoretical models of the electrical discharge machining process. I A simple cathode erosion model. J Appl Phys 66:4095–4103. https://doi.org/10.1063/1.343994

    Article  Google Scholar 

  3. Patel MR, Barrufet MA, Eubank PT, DiBitonto DD (1989) Theoretical models of the electrical discharge machining process. II The anode erosion model. J Appl Phys 66:4104–4111. https://doi.org/10.1063/1.343995

    Article  Google Scholar 

  4. Yeo SH, Kurnia W, Tan PC (2007) Electro-thermal modelling of anode and cathode in micro-EDM. J Phys D Appl Phys 40:2513–2521. https://doi.org/10.1088/0022-3727/40/8/015

    Article  Google Scholar 

  5. Marafona J, Chousal JAG (2006) A finite element model of EDM based on the joule effect. Int J Mach Tools Manuf 46:595–602. https://doi.org/10.1016/j.ijmachtools.2005.07.017

    Article  Google Scholar 

  6. Salah NB, Ghanem F, Atig KB (2006) Numerical study of thermal aspects of electric discharge machining process. Int J Mach Tools Manuf 46:908–911. https://doi.org/10.1016/j.ijmachtools.2005.04.022

    Article  Google Scholar 

  7. Salah NB, Ghanem F, Atig KB (2008) Thermal and mechanical numerical modelling of electric discharge machining process. Commun Numer Methods Eng 24:2021–2034. https://doi.org/10.1002/cnm

    Article  MathSciNet  MATH  Google Scholar 

  8. Assarzadeh S, Ghoreishi M (2017) Electro-thermal-based finite element simulation and experimental validation of material removal in static gap single- spark die-sinking electro-discharge machining process. Proc Inst Mech Eng B J Eng Manuf 231:28–47. https://doi.org/10.1177/0954405415572661

    Article  Google Scholar 

  9. Joshi SN, Pande SS (2009) Development of an intelligent process model for EDM. Int J Adv Manuf Technol 45:300–317. https://doi.org/10.1007/s00170-009-1972-4

    Article  Google Scholar 

  10. Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Process 12:45–56. https://doi.org/10.1016/j.jmapro.2010.02.001

    Article  Google Scholar 

  11. Somashekhar KP, Mathew J, Ramachandran N (2012) Electrothermal theory approach for numerical approximation of the μ-EDM process. Int J Adv Manuf Technol 61:1241–1246. https://doi.org/10.1007/s00170-012-4100-9

    Article  Google Scholar 

  12. Weingärtner E, Kuster F, Wegener K (2012) Modeling and simulation of electrical discharge machining. Procedia CIRP 2:74–78

    Article  Google Scholar 

  13. Kojima A, Natsu W, Kunieda M (2008) Spectroscopic measurement of arc plasma diameter in EDM. CIRP Ann Manuf Technol 57:203–207. https://doi.org/10.1016/j.cirp.2008.03.097

    Article  Google Scholar 

  14. Tlili A, Ghanem F, Salah NB (2015) A contribution in EDM simulation field. Int J Adv Manuf Technol 79:921–935. https://doi.org/10.1007/s00170-015-6880-1

    Article  Google Scholar 

  15. Shabgard M, Ahmadi R, Seyedzavvar M, Oliaei SNB (2013) Mathematical and numerical modeling of the effect of input-parameters on the flushing efficiency of plasma channel in EDM process. Int J Mach Tools Manuf 65:79–87. https://doi.org/10.1016/j.ijmachtools.2012.10.004

    Article  Google Scholar 

  16. Hosseini Kalajahi M, Rash Ahmadi S, Nadimi Bavil Oliaei S (2013) Experimental and finite element analysis of EDM process and investigation of material removal rate by response surface methodology. Int J Adv Manuf Technol 69:687–704. https://doi.org/10.1007/s00170-013-5059-x

    Article  Google Scholar 

  17. Ming W, Zhang G, Li H, Guo J, Zhang Z, Huang Y, Chen Z (2014) A hybrid process model for EDM based on finite-element method and Gaussian process regression. Int J Adv Manuf Technol 74:1197–1211. https://doi.org/10.1007/s00170-014-5989-y

    Article  Google Scholar 

  18. Kuriachen B, Varghese A, Somashekhar KP, Panda S, Mathew J (2015) Three-dimensional numerical simulation of microelectric discharge machining of Ti-6Al-4V. Int J Adv Manuf Technol 79:147–160. https://doi.org/10.1007/s00170-015-6794-y

    Article  Google Scholar 

  19. Dilip DG, Ananthan SP, Panda S, Mathew J (2019) Numerical simulation of the influence of fluid motion in mushy zone during micro-EDM on the crater surface profile of Inconel 718 alloy. J Braz Soc Mech Sci Eng 41:1–14. https://doi.org/10.1007/s40430-019-1595-0

    Article  Google Scholar 

  20. Salonitis K, Stournaras A, Stavropoulos P, Chryssolouris G (2008) Thermal modeling of the material removal rate and surface roughness for die-sinking EDM. Int J Adv Manuf Technol 40:316–323. https://doi.org/10.1007/s00170-007-1327-y

    Article  Google Scholar 

  21. Kurnia W, Tan PC, Yeo SH, Tan QP (2009) Surface roughness model for micro electrical discharge machining. Proc Inst Mech Eng B J Eng Manuf 223:279–287. https://doi.org/10.1243/09544054JEM1188

    Article  Google Scholar 

  22. Razeghiyadaki A, Molardi C, Talamona D, Perveen A (2019) Modeling of material removal rate and surface roughness generated during electro-discharge machining. Machines 7:47. https://doi.org/10.3390/machines7020047

    Article  Google Scholar 

  23. Shahane S, Pande SS (2016) Development of a thermo-physical model for multi-spark wire EDM process. Procedia Manuf 5:205–219. https://doi.org/10.1016/j.promfg.2016.08.019

    Article  Google Scholar 

  24. Tan PC, Yeo SH (2008) Modelling of overlapping craters in micro-electrical discharge machining. J Phys D Appl Phys 41:205302. https://doi.org/10.1088/0022-3727/41/20/205302

    Article  Google Scholar 

  25. Krishna Kiran MPS, Joshi SS (2007) Modeling of surface roughness and the role of debris in micro-EDM. J Manuf Sci Eng 129:265–273. https://doi.org/10.1115/1.2540683

    Article  Google Scholar 

  26. Jithin S, Bhandarkar U, Joshi SS (2017) Analytical simulation of random textures generated in electrical discharge texturing. J Manuf Sci Eng 139:111002 (1-12). https://doi.org/10.1115/1.4037322

    Article  Google Scholar 

  27. Gadelmawla ES, Koura MM, Maksoud TMA et al (2002) Roughness parameters. J Mater Process Technol 123:133–145. https://doi.org/10.1016/S0924-0136(02)00060-2

    Article  Google Scholar 

  28. Valencia JJ, Quested PN (2008) Thermophysical properties. In: ASM handbook: Casting, pp 468–481

  29. Yadav V, Jain VK, Dixit PM (2002) Thermal stresses due to electrical discharge machining. Int J Mach Tools Manuf 42:877–888. https://doi.org/10.1016/S0890-6955(02)00029-9

    Article  Google Scholar 

  30. Ikai T, Hashigushi K (1995) Heat input for crater formation in EDM. In: Proceedings of the International Symposium for Electro-Machining-ISEM XI, EPFL. pp 163–170

  31. Singh H (2012) Experimental study of distribution of energy during EDM process for utilization in thermal models. Int J Heat Mass Transf 55:5053–5064. https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.004

    Article  Google Scholar 

  32. Aich U, Banerjee S (2017) Characterizing topography of EDM generated surface by time series and autocorrelation function. Tribol Int 111:73–90. https://doi.org/10.1016/j.triboint.2017.02.016

    Article  Google Scholar 

  33. Kunieda M, Kojima H, Kinoshita N (1990) On-line detection of EDM spark locations by multiple connection of branched electric wires. CIRP Ann Manuf Technol 39:171–174. https://doi.org/10.1016/S0007-8506(07)61028-2

    Article  Google Scholar 

  34. Koshy P, Jain VK, Lal GK (1993) Experimental investigations into electrical discharge machining with a rotating disk electrode. Precis Eng 15:6–15. https://doi.org/10.1016/0141-6359(93)90273-D

    Article  Google Scholar 

  35. Kunieda M, Lauwers B, Rajurkar KP, Schumacher BM (2005) Advancing EDM through fundamental insight into the process. CIRP Ann Manuf Technol 54:64–87. https://doi.org/10.1016/S0007-8506(07)60020-1

    Article  Google Scholar 

  36. Kumar Baroi B, Kar S, Kumar Patowari P (2018) Electric discharge machining of titanium grade 2 alloy and its parametric study. Mater Today Proc 5:5004–5011. https://doi.org/10.1016/j.matpr.2017.12.078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas S. Joshi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jithin, S., Bhandarkar, U.V. & Joshi, S.S. Multi-spark model for predicting surface roughness of electrical discharge textured surfaces. Int J Adv Manuf Technol 106, 3741–3758 (2020). https://doi.org/10.1007/s00170-019-04841-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-04841-5

Keywords

Navigation