Skip to main content
Log in

Analytical investigation on nonlinear vibration behavior of an unbalanced asymmetric rotor using the method of multiple scales

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this paper, the vibration behavior of a rotor with an asymmetric shaft subjected to unbalanced forces is analyzed theoretically. The model is a rotor composed of a rigid disk and a flexible shaft. The shaft is considered to be a beam with a rectangular cross section. The general equations of motion were first derived by considering the effect of high order large deformation in bending. In this process, a continuous shaft, gyroscopic effects, and rotor mass unbalance are taken into account to study the rotor’s nonlinear vibratory behavior near the main resonances. The equations are discretized using the Rayleigh–Ritz method. The obtained equations are nonlinear coupled differential equations which are solved using the multiple-scales method. It can be concluded from the results that nonlinearity due to an asymmetric shaft severely affects the resonance behavior of the rotor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a 1 :

Amplitude at the equilibrium position (m) in x direction

a 2 :

Amplitude at the equilibrium position (m) in z direction

\(\varOmega\) :

Angular Velocity of the rotor (rad sec−1)

\(\omega_{1}\), \(\omega_{2}\) :

First and second critical speed of the rotor (rad sec−1)

I :

Average area moment of inertia of shaft (m4)

c :

Coefficient of damping (N s m−1)

R 1 :

Cross-sectional radius of shaft/internal radius of disk (m2)

A :

Cross-sectional area of shaft (m2)

\(\rho\) :

Density of material (kg m−3)

\(\sigma\) :

Detuning parameter (rad sec−1)

u(y, t):

Displacement along x-axis of rotor (m)

w(y, t):

Displacement along z-axis of rotor (m)

T S :

Kinetic energy of shaft (N m)

T D :

Kinetic energy of disk (N m)

T u :

Kinetic energy of mass unbalance (N m)

L :

Length of shaft (m)

I D x :

Mass moment of inertia of disk in direction x (kg m2)

I D y :

Mass moment of inertia of disk in direction y (kg m2)

M D :

Mass of disk (kg)

d :

Position of mass unbalance from geometric center of shaft (m)

L 1 :

Position of disk on shaft (m)

U s :

Strain (deformation) energy of shaft (N m)

T R :

Total kinetic energy of rotor (N m)

U R :

Total strain (deformation) energy of rotor (N m)

References

  1. Lalanne M, Ferraris G (1998) Rotordynamics prediction in engineering, 2nd edn. Wiley, Hoboken

    Google Scholar 

  2. Genta G (2005) Dynamics of rotating systems. Springer, New York

    Book  Google Scholar 

  3. Muszynska A (2005) Rotordynamics (Broken Sound Parkway). Taylor & Francis, Routledge

    Book  Google Scholar 

  4. Rao JS (2011) History of rotating machinery dynamics. Springer, New Delhi

    Book  Google Scholar 

  5. Ishida Y, Yamamoto T (2012) Linear and nonlinear rotordynamics: a modern treatment with applications. Wiley, Weinheim

    Book  Google Scholar 

  6. Xia Z, Qiao G, Zheng T, Zhang W (2009) Nonlinear modelling and dynamic analysis of the rotor-bearing system. Nonlinear Dyn 57:559–577

    Article  Google Scholar 

  7. Phadatare HP, Maheshwari V, Vaidya KS, Pratiher B (2017) Large deflection model for nonlinear flexural vibration analysis of a highly flexible rotor-bearing system. Int J Mech Sci 134:532–544

    Article  Google Scholar 

  8. Shang L, Xia P, Hodges DH (2018) Geometrically exact nonlinear analysis of pre-twisted composite rotor blades. Chin J Aeronaut 31(2):300–309

    Article  Google Scholar 

  9. Liu Z, Liu Z, Zhao J, Zhang G (2017) Study on interactions between tooth backlash and journal bearing clearance nonlinearity in spur gear pair system. Mech Mach Theor 107:229–245

    Article  Google Scholar 

  10. Eftekhari M, Rahmatabadi AD, Mazidi A (2018) Nonlinear vibration of in-extensional rotating shaft under electromagnetic load. Mech Mach Theory 121:42–58

    Article  Google Scholar 

  11. Hong J, Yu P, Zhang D, Ma Y (2019) Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact. Mech Syst Signal Process 116:443–461

    Article  Google Scholar 

  12. Rao JS (1991) Rotor dynamics, 2nd edn. Wiley, Hoboken

    Google Scholar 

  13. Saavedra PN, Ramirez DE (2004) Vibration analysis of rotors for the identification of shaft misalignment Part 1: theoretical analysis. J Mech Eng Sci Part C 218(9):971–985

    Article  Google Scholar 

  14. Shad MR, Michon G, Berlioz A (2012) Nonlinear dynamics of rotors due to large deformations and shear effects. Appl Mech Mater 110:3593–3599

    Google Scholar 

  15. Shad MR, Michon G, Berlioz A (2011) Modeling and analysis of nonlinear rotordynamics due to higher order deformations in bending. Appl Math Modell 35:2145–2159

    Article  MathSciNet  Google Scholar 

  16. Pei Y-C (2009) Stability boundaries of a spinning rotor with parametrically excited gyroscopic system. Eur J Mech A Solids 28:891–896

    Article  Google Scholar 

  17. Shahgholi M, Khadem SE (2012) Primary and parametric resonances of asymmetrical rotating shafts with stretching nonlinearity. Mech Mach Theory 51:131–144

    Article  Google Scholar 

  18. Shahgholi M, Khadem SE (2013) Resonances of an in-extensional asymmetrical spinning shaft with speed fluctuations. Meccanica 48:103–120

    Article  MathSciNet  Google Scholar 

  19. Bartylla D (2012) Stability investigation of rotors with periodic axial force. Mech Mach Theory 58:13–19

    Article  Google Scholar 

  20. Srinath R, Sarkar A, Sekhar AS (2016) Instability of asymmetric shaft system. J Sound Vib 362(3):276–291

    Article  Google Scholar 

  21. Nayfeh AH, Mook DT (1979) Nonlinear oscillations. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Roozbeh Dargazany of University of Michigan University for his support and corrections on an earlier version of the manuscript. The authors are also grateful to the anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jamshidi.

Additional information

Technical Editor: José Roberto de França Arruda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Linear analysis

The rotor is analyzed as a free linear system without damping to determine natural frequencies, and in Fig. 7a, Campbell diagram is plotted to determine the rotor critical speeds. Two critical speeds are found to be 1442.1 rpm and 1462 rpm. The mass unbalance response is also shown in Fig. 7b.

Fig. 7
figure 7

a Campbell Diagram. b Mass unbalance response

1.2 Numerical data

Geometric and material properties

$$\begin{aligned} & \rho = 7800\,{\text{kgm}}^{ - 3} ,\;E = 200 \times 10^{9} \,{\text{Nm}}^{ - 2} ,\;c = 0.001 \\ & {\text{Shaft:}}\;L_{1} = 92\,{\text{mm}},\;L = 24\,{\text{mm,}}\;L_{1} = 80\,{\text{m}},\;Sx = 4\,{\text{mm}},\;Sz = 6\,{\text{mm}}\;(\text{rectangular}\,{\text{cross}}\,{\text{section}}\,4 \times 6) \\ & {\text{Disk:}}\;M_{\text{D}} = 1.561\,{\text{Kg}},\;R_{1} = 19\,{\text{mm}},\;R_{2} = 150\,{\text{mm}},\;h = 10\,{\text{mm}},\;I_{{{\text{D}}x}} = M_{\text{D}} (3R_{1}^{2} + 3R_{2}^{2} + h^{2} ) /12 \\ & I_{{{\text{D}}y}} = M_{\text{D}} (R_{1}^{2} + R_{2}^{2} ) /2,\;m_{\text{u}} = 1\,{\text{g}} \\ \end{aligned}$$

Constants

$$\lambda_{1} = 0.017,\quad \lambda_{2} = 2.0354 \times 10^{ - 6} ,\quad \beta_{1} = 2.325 \times 10^{4} ,\quad \beta_{2} = 8.9424 \times 10^{3} ,\quad \beta_{3} = 8.0482 \times 10^{9}$$

1.3 Functions H 1 and H 2 used in Eqs. (30) and (31) are given as

$$\begin{aligned} H_{1} & = - 0.5\beta_{3} [(1 + \varLambda_{1}^{2} )A_{1}^{3} \exp [3i\omega_{1} T_{0} ] \\ & \quad + \,(3 + \varLambda_{2}^{2} + 2\varLambda_{1} \varLambda_{2} )A_{1} A_{2}^{2} \exp [i(\omega_{1} + 2\omega_{2} )T_{0} ] + (3 + \varLambda_{1}^{2} + 2\varLambda_{1} \varLambda_{2} )A_{1}^{2} A_{2} \exp [i(2\omega_{1} + \omega_{2} )T_{0} ] \\ & \quad + \,[ - 2i\omega_{1} D_{1} A_{1} (T_{1} ) + \lambda_{1} \varOmega \varLambda_{1} D_{1} A_{1} + (3 + \varLambda_{1} \bar{\varLambda }_{2} + \varLambda_{1} \bar{\varLambda }_{1} + \varLambda_{1}^{2} )A_{1}^{2} \bar{A}_{1} + (6 + 2\varLambda_{2} \bar{\varLambda }_{2} + 2\varLambda_{1} \bar{\varLambda }_{2} + \varLambda_{1} \varLambda_{2} )A_{1} A_{2} \bar{A}_{2} - ic\omega_{1} A_{1} ]\exp [i\omega_{1} T_{0} ] \\ & \quad + \,[ - 2i\omega_{2} D_{1} A_{2} (T_{1} ) + \varLambda_{2} \lambda_{1} \varOmega D_{1} A_{2} + (6 + 2\bar{\varLambda }_{1} \varLambda_{2} + 2\varLambda_{1} \bar{\varLambda }_{1} + 2\varLambda_{1} \varLambda_{2} )A_{1} \bar{A}_{1} A_{2} + (3 + 2\varLambda_{2} \bar{\varLambda }_{2} + \varLambda_{2}^{2} )A_{2}^{2} \bar{A}_{2} - ic\omega_{2} A_{2} ]\exp [i\omega_{2} T_{0} ] \\ & \quad + \,(1 + \bar{\varLambda }_{2}^{2} )A_{1} \bar{A}_{2}^{2} \exp [i(\omega_{1} - 2\omega_{2} )T_{0} ] + (2 + 2\varLambda_{1} \bar{\varLambda }_{2} )A_{1}^{2} \bar{A}_{2} \exp [i(2\omega_{1} - \omega_{2} )T_{0} ] \\ & \quad + \,(1 + \varLambda_{2}^{2} )A_{2}^{3} \exp [3i\omega_{2} T_{0} ] + (2 + 2\bar{\varLambda }_{1} \varLambda_{2} )\bar{A}_{1} A_{2}^{2} \exp [i(2\omega_{2} - \omega_{1} )T_{0} ] \\ & \quad + \,(1 + \bar{\varLambda }_{1}^{2} )\bar{A}_{1}^{2} A_{2} [i(\omega_{2} - 2\omega_{1} )T_{0} ] + cc] - 0.5im_{e} \varOmega^{2} df(L_{1} )\exp (i\varOmega T_{0} ) + cc \\ & \quad \quad 0.5\,[ - \lambda_{2} \omega_{1}^{2} - \lambda_{2} \omega_{1} (2\varOmega ) - \lambda_{2} i\omega_{1}^{2} \varLambda_{1} - \lambda_{2} \omega_{1} \varLambda_{1} i(2\varOmega ) + \beta_{2} + \beta_{2} i\varLambda_{1} ]A_{1} \exp [i(2\varOmega + \omega_{1} )] \\ & \quad \quad 0.5\,[ - \lambda_{2} \omega_{1}^{2} + \lambda_{2} \omega_{1} (2\varOmega ) + \lambda_{2} i\omega_{1}^{2} \varLambda_{1} - \lambda_{2} \omega_{1} \varLambda_{1} i(2\varOmega ) + \beta_{2} - \beta_{2} i\varLambda_{1} ]\bar{A}_{1} \exp [i(2\varOmega - \omega_{1} )] \\ & \quad \quad 0.5\,[ - \lambda_{2} \omega_{2}^{2} - \lambda_{2} \omega_{2} (2\varOmega ) - \lambda_{2} i\omega_{2}^{2} \varLambda_{2} - \lambda_{2} \omega_{2} \varLambda_{2} i(2\varOmega ) + \beta_{2} + \beta_{2} i\varLambda_{2} ]A_{2} \exp [i(2\varOmega + \omega_{2} )] \\ & \quad \quad 0.5\,[ - \lambda_{2} \omega_{2}^{2} + \lambda_{2} \omega_{2} (2\varOmega ) + \lambda_{2} i\omega_{2}^{2} \varLambda_{2} - \lambda_{2} \omega_{2} \varLambda_{2} i(2\varOmega ) + \beta_{2} - \beta_{2} i\varLambda_{2} ]\bar{A}_{2} \exp [i(2\varOmega - \omega_{2} )] \\ \end{aligned}$$
$$\begin{aligned} H_{2} & = - 0.5\beta_{3} [(\varLambda_{1} + \varLambda_{1}^{3} )A_{1}^{3} \exp [3i\omega_{1} T_{0} ] + (\varLambda_{1} + 2\varLambda_{2} + 3\varLambda_{1} \varLambda_{2}^{2} )A_{1} A_{2}^{2} \exp [i(\omega_{1} + 2\omega_{2} )T_{0} ] \\ & \quad + \,(2\varLambda_{1} + \varLambda_{2} + 3\varLambda_{1}^{2} \varLambda_{2} )A_{1}^{2} A_{2} \exp [i(2\omega_{1} + \omega_{2} )T_{0} ] \\ & \quad + \,[ - 2\varLambda_{1} i\omega_{1} D_{1} A_{1} - \lambda_{1} \varOmega D_{1} A_{1} (T_{1} ) + (2\varLambda_{1} + \bar{\varLambda }_{1} + 3\varLambda_{1}^{2} \bar{\varLambda }_{1} )A_{1}^{2} \bar{A}_{1} + (2\varLambda_{1} + 2\varLambda_{2} + 2\bar{\varLambda }_{2} + 6\varLambda_{1} \varLambda_{2} \bar{\varLambda }_{2} )A_{1} A_{2} \bar{A}_{2} - ic\omega_{1} \varLambda_{1} A_{1} ]\exp [i\omega_{1} T_{0} ] \\ & \quad + \,[ - 2\varLambda_{2} i\omega_{1} D_{1} A_{2} - \lambda_{1} \varOmega D_{1} A_{2} (T_{1} ) + (2\varLambda_{1} + 2\varLambda_{2} + 2\bar{\varLambda }_{1} + 6\varLambda_{1} \bar{\varLambda }_{1} \varLambda_{2} )A_{1} \bar{A}_{1} A_{2} + (2\varLambda_{2} + \bar{\varLambda }_{2} + 3\varLambda_{2}^{2} \bar{\varLambda }_{2} )A_{2}^{2} \bar{A}_{2} - ic\omega_{2} \varLambda_{2} A_{2} ]\exp [i\omega_{2} T_{0} ] \\ & \quad + \,(\varLambda_{1} + 2\bar{\varLambda }_{2} + 3\varLambda_{1} \bar{\varLambda }_{2}^{2} )A_{1} \bar{A}_{2}^{2} \exp [i(\omega_{1} - 2\omega_{2} )T_{0} ] + (2\varLambda_{1} + \bar{\varLambda }_{2} + 3\varLambda_{1}^{2} \bar{\varLambda }_{2} )A_{1}^{2} \bar{A}_{2} \exp [i(2\omega_{1} - \omega_{2} )T_{0} ] \\ & \quad + \,(\varLambda_{2} + \varLambda_{2}^{3} )A_{2}^{3} \exp [3i\omega_{2} T_{0} ] + cc] + 0.5m_{e} \varOmega^{2} df(L_{1} )\exp (i\varOmega T_{0} ) + cc \\ & \quad \quad 0.5\,[\lambda_{2} \omega_{1}^{2} \varLambda_{1} + \lambda_{2} \omega_{1} \varLambda_{1} (2\varOmega ) - \lambda_{2} i\omega_{1}^{2} - \lambda_{2} i\omega_{1} (2\varOmega ) + \beta_{2} i - \beta_{2} \varLambda_{1} ]A_{1} \exp [i(2\varOmega + \omega_{1} )] \\ & \quad \quad 0.5\,[ - \lambda_{2} \omega_{1}^{2} \varLambda_{1} + \lambda_{2} \omega_{1} \varLambda_{1} (2\varOmega ) - \lambda_{2} i\omega_{1}^{2} + \lambda_{2} i\omega_{1} (2\varOmega ) + \beta_{2} i + \beta_{2} \varLambda_{1} ]\bar{A}_{1} \exp [i(2\varOmega - \omega_{1} )] \\ & \quad \quad 0.5\,[\lambda_{2} \omega_{2}^{2} \varLambda_{2} + \lambda_{2} \omega_{2} \varLambda_{2} (2\varOmega ) - \lambda_{2} i\omega_{2}^{2} + \lambda_{2} i\omega_{2} (2\varOmega ) + \beta_{2} i - \beta_{2} \varLambda_{2} ]A_{2} \exp [i(2\varOmega + \omega_{2} )] \\ & \quad \quad 0.5\,[ - \lambda_{2} \omega_{2}^{2} \varLambda_{2} + \lambda_{2} \omega_{2} \varLambda_{2} (2\varOmega ) - \lambda_{2} i\omega_{2}^{2} + \lambda_{2} i\omega_{2} (2\varOmega ) + \beta_{2} i + \beta_{2} \varLambda_{2} ]\bar{A}_{2} \exp [i(2\varOmega - \omega_{2} )] \\ \end{aligned}$$

1.4 Constants

1.4.1 (a) Constants used in Eqs. (39) and (40) are given as

$$\begin{aligned} c_{2} & = - \frac{{C_{2} }}{{C_{1} }},\quad c_{3} = - \frac{{C_{3} }}{{C_{1} }},\quad c_{4} = - \frac{{C_{4} }}{{C_{1} }},\quad c_{5} = - \frac{{C_{5} }}{{C_{1} }},\quad c_{6} = - \frac{{C_{6} }}{{C_{1} }} \\ d_{2} & = - \frac{{D_{2} }}{{D_{1} }},\quad d_{3} = - \frac{{D_{3} }}{{D_{1} }},\quad d_{4} = - \frac{{D_{4} }}{{D_{1} }} \\ \end{aligned}$$

where

$$\begin{aligned} C_{1} & = (\beta_{1} - \omega_{1}^{2} )( + 2\varLambda_{1} i\omega_{1} + \lambda_{1} \varOmega ) + i\omega_{1}^{2} \lambda_{1} ( - 2i\omega_{1} + \lambda_{1} \varOmega \varLambda_{1} ) \\ C_{2} & = - (\beta_{1} - \omega_{1}^{2} )\frac{{\beta_{3} }}{2}(2\varLambda_{1} + \bar{\varLambda }_{1} + 3\varLambda_{1}^{2} \bar{\varLambda }_{1} ) + i\omega_{1}^{2} \lambda_{1} \frac{{\beta_{3} }}{2}(3 + 2\varLambda_{1} \bar{\varLambda }_{1} + \varLambda_{1}^{2} ) \\ C_{3} & = - (\beta_{1} - \omega_{1}^{2} )\frac{{\beta_{3} }}{2}(2\varLambda_{1} + 2\varLambda_{2} + 2\bar{\varLambda }_{2} + 6\varLambda_{1} \varLambda_{2} \bar{\varLambda }_{2} ) + i\omega_{1}^{2} \lambda_{1} \frac{{\beta_{3} }}{2}(6 + 2\varLambda_{2} \bar{\varLambda }_{2} + 2\varLambda_{1} \bar{\varLambda }_{2} + 2\varLambda_{1} \varLambda_{2} ) \\ C_{4} & = \frac{1}{2}(\beta_{1} - \omega_{1}^{2} )m_{e} \omega_{1}^{2} df(L_{1} ) - \frac{1}{2}\omega_{1}^{2} \lambda_{1} m_{e} \omega_{1}^{2} {\text{d}}f(L_{1} ) \\ C_{5} & = - (\beta_{1} - \omega_{1}^{2} )ic\omega_{1} \varLambda_{1} - \omega_{1}^{3} \lambda_{1} c \\ C_{6} & = \frac{1}{2}[(\beta_{1} - \omega_{1}^{2} )( - \lambda_{2} \omega_{1}^{2} \varLambda_{1} + \lambda_{2} \omega_{1} \varLambda_{1} (2\varOmega ) - \lambda_{2} i\omega_{1}^{2} + \lambda_{2} i\omega_{1} (2\varOmega ) + \beta_{2} i + \beta_{2} \varLambda_{1} ) \\ & \quad - \,i\omega_{1}^{2} \lambda_{1} ( - \lambda_{2} \omega_{1}^{2} + \lambda_{2} \omega_{1} (2\varOmega ) + \lambda_{2} i\omega_{1}^{2} \varLambda_{1} - \lambda_{2} \omega_{1} \varLambda_{1} i(2\varOmega ) + \beta_{2} - \beta_{2} i\varLambda_{1} )] \\ D_{1} & = (\beta_{1} - \omega_{2}^{2} )(2\varLambda_{2} i\omega_{1} + \lambda_{1} \varOmega ) + i\omega_{1} \omega_{2} \lambda_{1} (2i\omega_{2} - \varLambda_{2} \lambda_{1} \varOmega ) \\ D_{2} & = - (\beta_{1} - \omega_{2}^{2} )\frac{{\beta_{3} }}{2}(2\varLambda_{2} + \bar{\varLambda }_{2} + 3\varLambda_{2}^{2} \bar{\varLambda }_{2} ) - i\omega_{1} \omega_{2} \lambda_{1} \frac{{\beta_{3} }}{2}(3 + 2\varLambda_{2} \bar{\varLambda }_{2} + \varLambda_{2}^{2} ) \\ D_{3} & = - (\beta_{1} - \omega_{2}^{2} )\frac{{\beta_{3} }}{2}(2\varLambda_{1} + 2\varLambda_{2} + 2\bar{\varLambda }_{1} + 6\varLambda_{1} \bar{\varLambda }_{1} \varLambda_{2} ) - i\omega_{1} \omega_{2} \lambda_{1} \frac{{\beta_{3} }}{2}(6 + 2\bar{\varLambda }_{1} \varLambda_{2} + 2\varLambda_{1} \bar{\varLambda }_{1} + 2\varLambda_{1} \varLambda_{2} ) \\ D_{4} & = - (\beta_{1} - \omega_{2}^{2} )ic\omega_{2} \varLambda_{2} + \omega_{1} \omega_{2}^{2} \lambda_{1} c) \\ \end{aligned}$$

1.4.2 (b) Constants used in Eq. (43) are given as

$$c_{2}^{{\prime }} = - \frac{{C_{2}^{{\prime }} }}{{C_{1}^{{\prime }} }},\quad c_{3} = - \frac{{C_{3}^{{\prime }} }}{{C_{1}^{{\prime }} }},\quad c_{4} = - \frac{{C_{4}^{{\prime }} }}{{C_{1}^{{\prime }} }},\quad c_{5} = - \frac{{C_{5}^{{\prime }} }}{{C_{1}^{{\prime }} }},\quad c_{6} = - \frac{{C_{6}^{{\prime }} }}{{C_{1}^{{\prime }} }}$$

where

$$\begin{aligned} C_{1}^{{\prime }} & = (\beta_{1} \, - \omega_{2}^{2} )(2\varLambda_{2} i\omega_{1} + \lambda_{1} \omega_{2} ) - i\omega_{2}^{2} \lambda_{1} ( - 2i\omega_{2} + \varLambda_{2} \lambda_{1} \omega_{2} ) \\ C_{2}^{{\prime }} & = (\beta_{1} \, - \omega_{2}^{2} ) - \frac{{\beta_{3} }}{2}(2\varLambda_{2} + \bar{\varLambda }_{2} + 3\varLambda_{2}^{2} \bar{\varLambda }_{2} ) + i\omega_{2}^{2} \lambda_{1} - \frac{{\beta_{3} }}{2}(3 + 2\varLambda_{2} \bar{\varLambda }_{2} + \varLambda_{2}^{2} ) \\ C_{3}^{{\prime }} & = (\beta_{1} \, - \omega_{2}^{2} ) - \frac{{\beta_{3} }}{2}(2\varLambda_{1} + 2\varLambda_{2} + 2\bar{\varLambda }_{1} + 6\varLambda_{1} \bar{\varLambda }_{1} \varLambda_{2} ) + i\omega_{2}^{2} \lambda_{1} - \frac{{\beta_{3} }}{2}(6 + 2\bar{\varLambda }_{1} \varLambda_{2} + 2\varLambda_{1} \bar{\varLambda }_{1} + 2\varLambda_{1} \varLambda_{2} ) \\ C_{4}^{{\prime }} & = + (\beta_{1} \, - \omega_{2}^{2} )\frac{1}{2}m_{e} \omega_{2}^{2} {\text{d}}f(L_{1} ) + \omega_{2}^{2} \lambda_{1} \frac{1}{2}m_{e} \omega_{2}^{2} {\text{d}}f(L_{1} ) \\ C_{5}^{{\prime }} & = (\beta_{1} \, - \omega_{2}^{2} )( - ic\omega_{2} \varLambda_{2} ) + \omega_{2}^{3} \lambda_{1} c \\ C_{6}^{{\prime }} & = \frac{1}{2}\,(\beta_{1} \, - \omega_{2}^{2} )( - \lambda_{2} \omega_{2}^{2} \varLambda_{2} + \lambda_{2} \omega_{2} \varLambda_{2} (2\,\omega_{2} ) - \lambda_{2} i\omega_{2}^{2} + \lambda_{2} i\omega_{2} (2\,\omega_{2} ) + \beta_{2} i + \,\beta_{2} \varLambda_{2} ) \\ & \quad + \,\frac{1}{2}\,i\omega_{2}^{2} \lambda_{1} ( - \lambda_{2} \omega_{2}^{2} + \lambda_{2} \omega_{2} (2\,\omega_{2} ) + \,\lambda_{2} i\omega_{2}^{2} \varLambda_{2} - \lambda_{2} \omega_{2} \varLambda_{2} i(2\,\omega_{2} ) + \beta_{2} - \beta_{2} i\varLambda_{2} ). \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, P., Jafari, A.A. Analytical investigation on nonlinear vibration behavior of an unbalanced asymmetric rotor using the method of multiple scales. J Braz. Soc. Mech. Sci. Eng. 41, 456 (2019). https://doi.org/10.1007/s40430-019-1960-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1960-z

Keywords

Navigation