Skip to main content

Advertisement

Log in

Development of a cascade position control system for an SMA-actuated rotary actuator with improved experimental tracking results

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Hysteresis and significant nonlinearities in the stress–strain–temperature characteristics of shape memory alloy (SMA) actuators prevent effective utilization of these actuators and make them difficult to control. Due to these effects, the position control of SMA actuators has been a great challenge for many industrial applications. In this study, a cascade control for position tracking using torque and position measurement of an SMA-actuated rotary actuator is considered. The effects of the SMA characteristic model on control performance are also focused when simulation consequences are directly applied in practice. Based on nonlinear and unknown dynamics of an SMA actuator, a torque regulation adaptive controller using modified Brinson model is developed that requires to approximate the parameters of the system by only measuring SMA force and actuator rotation. Although it is shown that only an approximate model of the system is sufficient to develop the proposed controller, the system dynamic is simulated using MATLAB software, and the characteristics of SMA wire is considered by both modified Brinson constitutive model and Liang and Rogers constitutive model. The controller gains are regulated for both of the mentioned models using simulation. Finally, the performance of both controllers is further evaluated experimentally, and the accuracy of the proposed controller based on the modified Brinson model is compared to the controller based on the Liang and Rogers model. It is shown that since the Brinson model has a better prediction of the SMA wire behavior, the simulation results based on the modified Brinson model have better conformity to reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Manufactured by Dynalloy Inc.

  2. Autonics-E50S Series.

  3. Lascaux-STC-5 kg.

References

  1. Moallem M, Lu J (2005) Application of shape memory alloy actuators for flexure control: theory and experiments. IEEE/ASME Trans Mechatron 10(5):495–501

    Article  Google Scholar 

  2. Esfahani ET, Elahinia MH (2007) Stable walking pattern for an SMA-actuated biped. IEEE/ASME Trans Mechatron 12(5):534–541

    Article  Google Scholar 

  3. Hwang D, Higuchi T (2014) A rotary actuator using shape memory alloy (SMA) wires. IEEE/ASME Trans Mechatron 19(5):1625–1635

    Article  Google Scholar 

  4. Borges JM et al (2018) On the active control of a rotor-bearing system using shape memory alloy actuators: an experimental analysis. J Braz Soc Mech Sci Eng 40(5):269

    Article  Google Scholar 

  5. Khosravi MMKP (2018) Buckling and free vibration analyses of composite sandwich plates reinforced by shape-memory alloy wires. J Braz Soc Mech Sci Eng 40(11):515

    Article  Google Scholar 

  6. Pierce MD, Mascaro SA (2013) A biologically inspired wet shape memory alloy actuated robotic pump. IEEE/ASME Trans Mechatron 18(2):536–546

    Article  Google Scholar 

  7. Jin M, Lee J, Ahn KK (2015) Continuous nonsingular terminal sliding-mode control of shape memory alloy actuators using time delay estimation. IEEE/ASME Trans Mechatron 20(2):899–909

    Article  Google Scholar 

  8. Tanaka K, Kobayashi S, Sato Y (1986) Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int J Plast 2(1):59–72

    Article  Google Scholar 

  9. Liang C, Rogers CA (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1(2):207–234

    Article  Google Scholar 

  10. Sayyaadi H, Zakerzadeh MR, Salehi H (2012) A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests. Sci Iran 19(2):249–257

    Article  Google Scholar 

  11. Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242

    Article  Google Scholar 

  12. Chung JH, Heo JS, Lee JJ (2007) Implementation strategy for the dual transformation region in the Brinson SMA constitutive model. Smart Mater Struct 16(1):N1–N5

    Article  Google Scholar 

  13. Doroudchi A, Zakerzadeh MR, Baghani M (2018) Developing a fast response SMA-actuated rotary actuator: modeling and experimental validation. Meccanica 53(1–2):305–317

    Article  Google Scholar 

  14. Soltani M, Bozorg M, Zakerzadeh MR (2018) Parameter estimation of an SMA actuator model using an extended Kalman filter. Mechatronics 50:148–159

    Article  Google Scholar 

  15. Hassani V, Tjahjowidodo T, Do TN (2014) A survey on hysteresis modeling, identification and control. Mech Syst Signal Process 49(1–2):209–233

    Article  Google Scholar 

  16. Ruth DJS, Nakshatharan SS, Dhanalakshmi K (2012) Angular trajectory tracking using antagonistic shape memory alloy actuators. In: 2012 sixth international conference on sensing technology (ICST), pp 748–753

  17. Hannen JC, Crews JH, Buckner GD (2012) Indirect intelligent sliding mode control of a shape memory alloy actuated flexible beam using hysteretic recurrent neural networks. Smart Mater Struct 21(8):085015

    Article  Google Scholar 

  18. Nikdel N, Nikdel P, Badamchizadeh MA, Hassanzadeh I (2014) Using neural network model predictive control for controlling shape memory alloy-based manipulator. IEEE Trans Ind Electron 61(3):1394–1401

    Article  Google Scholar 

  19. Malinga B, Buckner GD (2015) ℒ1 adaptive control of a shape memory alloy actuated flexible beam. Syst Sci Control Eng 3(1):460–471

    Article  Google Scholar 

  20. de Abreu GLCM, Maesta MF, Lopes Junior V, De Marqui Junior C, Faria CT, Inman DJ (2015) Active angular control of a sectioned airfoil using shape memory alloys and fuzzy controller. J Braz Soc Mech Sci Eng 37(5):1555–1567

    Article  Google Scholar 

  21. Awan AU, Park J, Kim HJ, Ryu J, Cho M (2016) Adaptive control of a shape memory alloy actuator using neural-network feedforward and RISE feedback. Int J Precis Eng Manuf 17(4):409–418

    Article  Google Scholar 

  22. Quintanar Guzmán S, Kannan S, Aguilera González A, Olivares Mendez MA, Voos H (2017) Operational space control of a lightweight robotic arm actuated by shape memory alloy wires: a comparative study. J Intell Mater Syst Struct 30:1368–1384

    Article  Google Scholar 

  23. Maria Joseph FO, Podder T (2018) Sliding mode control of a shape memory alloy actuated active flexible needle. Robotica 36(08):1188–1205

    Article  Google Scholar 

  24. Moallem M, Tabrizi VA (2009) Tracking control of an antagonistic shape memory alloy actuator pair. IEEE Trans Control Syst Technol 17(1):184–190

    Article  Google Scholar 

  25. Khalil HK (1996) Nonlinear systems, 3rd edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Zakerzadeh.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco, D.Sc.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: rearranging modified Brinson model

Appendix A: rearranging modified Brinson model

Equations (3)–(6) can be further written as follows by rearranging:

$$\xi = g_{1} \left( {T,\sigma } \right)$$
(47)
$$\xi_{\text{s}} = g_{2} \left( {T,\sigma } \right)$$
(48)
$$\dot{\xi } = g_{3} \left( {T,\sigma } \right)\dot{T} + g_{4} \left( {T,\sigma } \right)\dot{\sigma }$$
(49)
$$\dot{\xi }_{\text{s}} = g_{5} \left( {T,\sigma } \right)\dot{T} + g_{6} \left( {T,\sigma } \right)\dot{\sigma }$$
(50)

where the functions \(g_{1} \left( {T,\sigma } \right)\) to \(g_{6} \left( {T,\sigma } \right)\) are obtained from the phase transformation equations as follows:

$$\begin{aligned} & g_{1} \left( {T,\sigma } \right) \\ & \quad = \left\{ {\begin{array}{*{20}l} {\frac{{\xi_{{{\text{T}}0}} }}{{1 - \xi_{{{\text{s}}0}} }} + \frac{{1 - \xi_{{{\text{T}}0}} - \xi_{{{\text{s}}0}} }}{{1 - \xi_{{{\text{s}}0}} }}\left( {\frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \cos }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} - C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \right)} \right) + \frac{{1 + \xi_{{{\text{s}}0}} }}{2}} \right), \ldots } \hfill \\ {{\text{if}}\;T > M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right) < \sigma < \sigma_{\text{f}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \hfill \\ {\frac{{2\xi_{{{\text{s}}0}} - 1}}{{\xi_{{{\text{s}}0}} - 1}}\Delta + \frac{{\xi_{{{\text{s}}0}} - 1 - \Delta }}{{\xi_{{{\text{s}}0}} - 1}}\left( {\frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \cos }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} } \right)} \right) + \frac{{1 + \xi_{{{\text{s}}0}} }}{2}} \right), \ldots } \hfill \\ {{\text{if}}\;T < M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} < \sigma < \sigma_{\text{f}}^{\text{cr}} } \hfill \\ {\frac{{\xi_{0} }}{2}\left[ {{ \cos }\left( {a_{\text{A}} \left( {T - A_{\text{s}} - \frac{\sigma }{{C_{\text{A}} }}} \right)} \right) + 1} \right], \;{\text{if}}\; T > A_{\text{s}} , C_{\text{A}} \left( {T - A_{\text{f}} } \right) < \sigma < C_{\text{A}} \left( {T - A_{\text{s}} } \right)} \hfill \\ {\xi , \;{\text{otherwise}}} \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(51)
$$\begin{aligned} & g_{2} \left( {T,\sigma } \right) \\ & \quad = \left\{ {\begin{array}{*{20}l} {\frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \cos }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} - C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \right)} \right) + \frac{{1 - \xi_{{{\text{s}}0}} }}{2}, \ldots } \hfill \\ {{\text{if}}\; T > M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right) < \sigma < \sigma_{\text{f}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \hfill \\ {\frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \cos }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} } \right)} \right) + \frac{{1 + \xi_{{{\text{s}}0}} }}{2},\; {\text{if}}\; T < M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} < \sigma < \sigma_{\text{f}}^{\text{cr}} } \hfill \\ {\xi_{{{\text{s}}0}} - \frac{{\xi_{{{\text{s}}0}} }}{{\xi_{0} }}\left( {\xi_{0} - \frac{{\xi_{0} }}{2}\left[ {{ \cos }\left( {a_{\text{A}} T - A_{\text{s}} - \frac{\sigma }{{C_{\text{A}} }}} \right) + 1} \right]} \right), \;{\text{if}}\; T > A_{\text{s}} , C_{\text{A}} \left( {T - A_{\text{f}} } \right) < \sigma < C_{\text{A}} \left( {T - A_{\text{s}} } \right)} \hfill \\ {\xi_{\text{s}} , \;{\text{otherwise}}} \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(52)
$$\begin{aligned} & g_{3} \left( {T,\sigma } \right) \\ & \quad = \left\{ {\begin{array}{*{20}l} { - \frac{{\xi_{{{\text{T}}0}} - 1 + \xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} - C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \right)} \right)\frac{{\pi C_{\text{M}} }}{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}, \ldots } \hfill \\ {{\text{if}}\; T > M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right) < \sigma < \sigma_{\text{f}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \hfill \\ { - \frac{{1 - \xi_{\text{s}} \left( {T,\sigma } \right)}}{{1 - \xi_{{{\text{s}}0}} }}\frac{{1 - \xi_{{{\text{T}}0}} - \xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {a_{\text{M}} \left( {T - M_{\text{f}} } \right)} \right)a_{\text{M}} , \;{\text{if}}\; M_{\text{f}} < T < M_{\text{s}} , T < T_{0} , \sigma_{\text{s}}^{\text{cr}} < \sigma < \sigma_{\text{f}}^{\text{cr}} } \hfill \\ { - \frac{{\xi_{0} }}{2}{ \sin }\left( {a_{\text{A}} \left( {T - A_{\text{s}} - \frac{\sigma }{{C_{\text{A}} }}} \right)} \right)a_{\text{A}} ,\;{\text{if}}\; T > A_{\text{s}} , C_{\text{A}} \left( {T - A_{\text{f}} } \right) < \sigma < C_{\text{A}} \left( {T - A_{\text{s}} } \right)} \hfill \\ {0, \;{\text{otherwise}}} \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(53)
$$\begin{aligned} & g_{4} \left( {T,\sigma } \right) \\ & \quad = \left\{ {\begin{array}{*{20}l} {\frac{{\xi_{{{\text{T}}0}} - 1 + \xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} - C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \right)} \right)\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}, \ldots } \hfill \\ {{\text{if}}\; T > M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right) < \sigma < \sigma_{\text{f}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \hfill \\ {\left( {\frac{\Delta }{{1 - \xi_{{{\text{s}}0}} }} - 1} \right)\frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} } \right)} \right)\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }},\;{\text{if}}\; T < M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} < \sigma < \sigma_{\text{f}}^{\text{cr}} } \hfill \\ {\frac{{\xi_{0} }}{{2C_{\text{A}} }}{ \sin }\left( {a_{\text{A}} \left( {T - A_{\text{s}} - \frac{\sigma }{{C_{\text{A}} }}} \right)} \right)a_{\text{A}} ,\;{\text{if}}\; T > A_{\text{s}} , C_{\text{A}} \left( {T - A_{\text{f}} } \right) < \sigma < C_{\text{A}} \left( {T - A_{\text{s}} } \right)} \hfill \\ {0,\;{\text{otherwise}}} \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(54)
$$\begin{aligned} & g_{5} \left( {T,\sigma } \right) \\ & \quad = \left\{ {\begin{array}{*{20}l} {\frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} - C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \right)} \right)\frac{{\pi C_{\text{M}} }}{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}, \ldots } \hfill \\ {{\text{if}}\; T > M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right) < \sigma < \sigma_{\text{f}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \hfill \\ { - \frac{{\xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {a_{\text{A}} \left( {T - A_{\text{s}} - \frac{\sigma }{{C_{\text{A}} }}} \right)} \right)a_{\text{A}} ,\;{\text{if}}\; T > A_{\text{s}} , C_{\text{A}} \left( {T - A_{\text{f}} } \right) < \sigma < C_{\text{A}} \left( {T - A_{\text{s}} } \right)} \hfill \\ {0, \;{\text{otherwise}}} \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(55)
$$\begin{aligned} & g_{6} \left( {T,\sigma } \right) \\ & \quad = \left\{ {\begin{array}{*{20}l} { - \frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} - C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \right)} \right)\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}, \ldots } \hfill \\ {{\text{if}}\; T > M_{\text{s}} , \;\sigma_{\text{s}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right) < \sigma < \sigma_{\text{f}}^{\text{cr}} + C_{\text{M}} \left( {T - M_{\text{s}} } \right)} \hfill \\ { - \frac{{1 - \xi_{{{\text{s}}0}} }}{2}{ \sin }\left( {\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }}\left( {\sigma - \sigma_{\text{f}}^{\text{cr}} } \right)} \right)\frac{\pi }{{\sigma_{\text{s}}^{\text{cr}} - \sigma_{\text{f}}^{\text{cr}} }},\;{\text{if}}\; T < M_{\text{s}} , \sigma_{\text{s}}^{\text{cr}} < \sigma < \sigma_{\text{f}}^{\text{cr}} } \hfill \\ {\frac{{\xi_{{{\text{s}}0}} }}{{2C_{\text{A}} }}{ \sin }\left( {a_{\text{A}} \left( {T - A_{\text{s}} - \frac{\sigma }{{C_{\text{A}} }}} \right)} \right)a_{\text{A}} ,\;{\text{if}}\; T > A_{\text{s}} , C_{\text{A}} \left( {T - A_{\text{f}} } \right) < \sigma < C_{\text{A}} \left( {T - A_{\text{s}} } \right) } \hfill \\ {0, \;{\text{otherwise}}} \hfill \\ \end{array} } \right. \\ \end{aligned}$$
(56)

It should be noted that the terms \(g_{1} \left( {T,\sigma } \right)\) to \(g_{6} \left( {T,\sigma } \right)\) are formed by some bounded constants, cosine and sine functions. Therefore, these terms are bounded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanzadeh Moghadam, M., Zakerzadeh, M.R. & Ayati, M. Development of a cascade position control system for an SMA-actuated rotary actuator with improved experimental tracking results. J Braz. Soc. Mech. Sci. Eng. 41, 407 (2019). https://doi.org/10.1007/s40430-019-1896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1896-3

Keywords

Navigation