Skip to main content
Log in

Finite element investigation of the elastic modulus of concentric boron nitride and carbon multi-walled nanotubes

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The finite element method is used here to study the elastic properties of concentric boron nitride and carbon multi-walled nanotubes. Beam and spring elements are, respectively, employed to model the covalent bonds between atoms and nonbonding van der Waals interactions between atoms located on different walls. The double-walled and triple-walled nanotubes with different arrangements of boron nitride and carbon nanotubes are considered. It is shown that the elastic modulus of the concentric multi-walled BN and C nanotubes increases by increasing the ratio of nanotube length to its diameter (aspect ratio). In addition, the effect of aspect ratio on the elastic modulus of the armchair nanotubes is larger than that on the elastic modulus of the armchair nanotubes. Comparing the elastic modulus of the double-walled and triple-walled nanotubes, it is observed that the effect of number of walls on the elastic modulus of the concentric boron nitride and carbon multi-walled nanotube is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089

    Article  Google Scholar 

  2. Ansari R, Rouhi S, Shahnazari A (2018) Investigation of the vibrational characteristics of double-walled carbon nanotubes/double-layered graphene sheets using the finite element method. Mech Adv Mater Struct 25:253–265

    Article  Google Scholar 

  3. Hernández E, Goze C, Bernier P, Rubio A (1999) Elastic properties of single-wall nanotubes. Appl Phys A 68:287–292

    Google Scholar 

  4. Avouris P, Hertel T, Martel R, Schmidt T, Shea HR, Walkup RE (1999) Carbon nanotubes: nanomechanics, manipulation, and electronic devices. Appl Surf Sci 141:201–209

    Article  Google Scholar 

  5. Ruoff SR, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930

    Article  Google Scholar 

  6. Treacy MM, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678

    Article  Google Scholar 

  7. Gao G, Cagin T, Goddard WA III (1998) Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology 9:184

    Article  Google Scholar 

  8. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260

    Article  Google Scholar 

  9. Yu MF, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552

    Article  Google Scholar 

  10. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499

    Article  MATH  Google Scholar 

  11. Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63:1517–1524

    Article  Google Scholar 

  12. Li C, Chou TW (2004) Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl Phys Lett 84:121–123

    Article  Google Scholar 

  13. Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B Eng 36:468–477

    Article  Google Scholar 

  14. Sammalkorpi M, Krasheninnikov A, Kuronen A, Nordlund K, Kaski K (2004) Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B 70:245416

    Article  Google Scholar 

  15. Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single-and multi-wall carbon nanotubes. J Mech Phys Solids 52:789–821

    Article  MATH  Google Scholar 

  16. Cao G, Chen X (2006) Buckling of single-walled carbon nanotubes upon bending: molecular dynamics simulations and finite element method. Phys Rev B 73:155435

    Article  Google Scholar 

  17. Georgantzinos SK, Anifantis NK (2009) Vibration analysis of multi-walled carbon nanotubes using a spring–mass based finite element model. Comput Mater Sci 47:168–177

    Article  Google Scholar 

  18. Sedghamiz E, Jamalizadeh E, Hosseini SMA, Sedghamiz T, Zahedi E (2014) Molecular dynamics simulation of boron nitride nanotube as a drug carrier. Arab J Sci Eng 39:6737–6742

    Article  Google Scholar 

  19. Khatti Z, Hashemianzadeh SM (2016) Boron nitride nanotube as a delivery system for platinum drugs: drug encapsulation and diffusion coefficient prediction. Eur J Pharm Sci 88:291–297

    Article  Google Scholar 

  20. Solimannejad M, Noormohammadbeigi M (2017) Boron nitride nanotube (BNNT) as a sensor of hydroperoxyl radical (HO2): a DFT study. J Iran Chem Soc 14:471–476

    Article  Google Scholar 

  21. Panchal MB, Upadhyay SH (2014) Boron nitride nanotube-based biosensor for acetone detection: molecular structural mechanics-based simulation. Mol Simul 40:1035–1042

    Article  Google Scholar 

  22. Barzegar HR, Pham T, Talyzin AV, Zettl A (2016) Synthesis of graphene nanoribbons inside boron nitride nanotubes. Phys Status Solidi B 253:2377–2379

    Article  Google Scholar 

  23. Chen X, Zhang L, Park C, Fay CC, Wang X, Ke Ch (2015) Mechanical strength of boron nitride nanotube–polymer interfaces. Appl Phys Lett 107:253105

    Article  Google Scholar 

  24. Zhang YQ, Liu YJ, Liu YL, Zhao JX (2014) Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation. J Mol Graph Model 51:1–6

    Article  Google Scholar 

  25. Deng ZY, Zhang JM, Xu KW (2016) Adsorption of SO2 molecule on doped (8, 0) boron nitride nanotube: a first-principles study. Phys E Low Dimens Syst Nanostruct 76:47–51

    Article  Google Scholar 

  26. Shin H, Guan J, Zgierski MZ, Kim KS, Kingston ChT, Simard B (2015) Covalent functionalization of boron nitride nanotubes via reduction chemistry. ACS Nano 9:12573–12582

    Article  Google Scholar 

  27. Gao Z, Zhi C, Bando Y, Golberg D, Serizawa T (2014) Noncovalent functionalization of boron nitride nanotubes inaqueous media opens application roads in nanobiomedicine. Nanobiomedicine 1:7

    Article  Google Scholar 

  28. Rouhi S (2016) Molecular dynamics simulation of the adsorption of polymer chains on CNTs, BNNTs and GaNNTs. Fibers Polym 17:333–342

    Article  Google Scholar 

  29. Esrafili MD, Behzadi H (2013) A DFT study on carbon-doping at different sites of (8, 0) boron nitride nanotube. Struct Chem 24:573–581

    Article  Google Scholar 

  30. Dhungana KB, Pati R (2014) Fluorinated boron nitride nanotube quantum dots: a spin filter. J Am Chem Soc 136:11494–11498

    Article  Google Scholar 

  31. Mercan K, Civalek Ö (2016) DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos Struct 143:300–309

    Article  Google Scholar 

  32. Machado LD, Ozden S, Tiwary CS, Autreto PAS, Vajtai R, Barrera EV, Galvao DS, Ajayan PM (2016) The structural and dynamical aspects of boron nitride nanotubes under high velocity impacts. Phys Chem Chem Phys 18:14776–14781

    Article  Google Scholar 

  33. Chowdhury R, Wang CY, Adhikari S, Scarpa F (2010) Vibration and symmetry-breaking of boron nitride nanotubes. Nanotechnology 21:365702

    Article  Google Scholar 

  34. Ansari R, Rouhi S, Mirnezhad M, Aryayi M (2015) Stability characteristics of single-walled boron nitride nanotubes. Arch Civ Mech Eng 15:162–170

    Article  Google Scholar 

  35. Yan JW, Liew KM (2015) Predicting elastic properties of single-walled boron nitride nanotubes and nanocones using an atomistic-continuum approach. Compos Struct 125:489–498

    Article  Google Scholar 

  36. Tao J, Xu G, Sun Y (2015) Elastic properties of boron-nitride nanotubes through an atomic simulation method. Math Probl Eng 2015:240547

    Google Scholar 

  37. Ansari R, Faghihnasiri M, Malakpour S, Sahmani S (2015) A DFT study of elastic and structural properties of (3,3) boron nitride nanotube under external electric field. Superlattices Microstruct 82:90–102

    Article  Google Scholar 

  38. Kumar D, Verma V, Dharamvir K, Bhatti HS (2015) Elastic moduli of boron nitride, aluminium nitride and gallium nitride nanotubes using second generation reactive empirical bond order potential. Multidiscip Model Mater Struct 11:2–15

    Article  Google Scholar 

  39. Rouhi S, Ansari R, Shahnazari A (2016) Vibrational characteristics of single-layered boron nitride nanosheet/single-walled boron nitride nanotube junctions using finite element modeling. Mater Res Express 3:125027

    Article  Google Scholar 

  40. Jing L, Tay RY, Li H, Tsang SH, Huang J, Tan D, Zhang B, Teo EHT, Tok AIY (2016) Coaxial carbon@boron nitride nanotube arrays with enhanced thermal stability and compressive mechanical properties. Nanoscale 8:11114–11122

    Article  Google Scholar 

  41. Jing L, Samani MK, Liu B, Li H, Tay RY, Tsang SH, Cometto O, Nylander A, Liu J, Teo EHT, Tok AIY (2017) Thermal conductivity enhancement of coaxial carbon@boron nitride nanotube arrays. ACS Appl Mater Interfaces 9:14555–14560

    Article  Google Scholar 

  42. Ansari R, Rouhi S, Nikkar A (2017) Finite element investigation of the vibrational behavior of concentric multi-walled boron nitride and carbon nanotubes. Int J Mod Phys B 31:1750018

    Article  Google Scholar 

  43. Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880

    Article  Google Scholar 

  44. Gelin BR (1994) Molecular modeling of polymer structures and properties. Carl HanserVerlag, Munich

    Google Scholar 

  45. Leach AR (1996) Molecular modeling principles and applications. Addison Wesley, London

    Google Scholar 

  46. Ansari R, Rouhi S (2010) Atomistic finite element model for axial buckling of single-walled carbon nanotubes. Physica E 43:58–69

    Article  Google Scholar 

  47. Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E 44:764–772

    Article  Google Scholar 

  48. Ansari R, Rouhi S, Aryayi M (2016) On the vibration of double-walled carbon nanotubes using molecular structural and cylindrical shell models. Int J Mod Phys B 30:1650007

    Article  Google Scholar 

  49. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  50. Hilder TA, Yang R, Ganesh V, Gordon D, Bliznyuk A, Rendell AP, Chung S-H (2010) Validity of current force fields for simulations on boron nitride nanotubes. Micro Nano Lett 5:150–156

    Article  Google Scholar 

  51. Eberhardt O, Wallmersperger T (2015) Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes. Carbon 95:166–180

    Article  Google Scholar 

  52. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883

    Article  Google Scholar 

  53. Chen Y, Chadderton LT, Gerald JF, Williams JS (1999) A solid-state process for formation of boron nitride nanotubes. Appl Phys Lett 74:2960–2962

    Article  Google Scholar 

  54. Santosh M, Maiti PK, Sood AK (2009) Elastic properties of boron nitride nanotubes and their comparison with carbon nanotubes. J Nanosci Nanotechnol 9:5425–5430

    Article  Google Scholar 

  55. Chopra NG, Zettl A (1998) Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun 105:297–300

    Article  Google Scholar 

  56. Wei X, Wang MS, Bando Y, Golberg D (2010) Tensile tests on individual multi-walled boron nitride nanotubes. Adv Mater 22:4895–4899

    Article  Google Scholar 

  57. Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406

    Article  Google Scholar 

  58. Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074

    Article  MATH  Google Scholar 

  59. Wei X, Chen Q, Peng LM, Cui R, Li Y (2009) Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J Phys Chem C 113:17002–17005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rouhi.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhi, S., Nikkar, A. & Ansari, R. Finite element investigation of the elastic modulus of concentric boron nitride and carbon multi-walled nanotubes. J Braz. Soc. Mech. Sci. Eng. 41, 34 (2019). https://doi.org/10.1007/s40430-018-1511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1511-z

Keywords

Navigation