Skip to main content
Log in

High-order triangular finite elements applied to visco-hyperelastic materials under plane stress

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A finite element formulation for analysis of highly deformable viscoelastic materials under plane stresses is presented. The element is the isoparametric plane triangle of any-order. The constitutive modeling is based on a Lagrangian visco-hyperelastic framework, in which the multiplicative split of the deformation gradient is used. The internal variable employed is the viscous right Cauchy–Green stretch tensor. The work is restricted to the compressible neo-Hookean hyperelastic law, the Zener rheological model and an isochoric nonlinear evolution equation, although other models can be further implemented. The plane stress condensation and the compact 2D constitutive relation are described. Three large deformation problems are numerically analyzed to validate the methodology: a membrane with high compressive strain levels and mesh distortion; a perforated plate with stress concentration; and a circular ring under nonlinear bending. Meshes with different element orders (from linear to sixth) are employed. Results confirm that, except for the linear degree, mesh refinement completely remove locking problems, providing an accurate and, thus, a reliable prediction of the mechanical behavior. It is also demonstrated that the creep phenomenon can be reproduced in finite strain regime. The novelty of the paper is the convergence analysis regarding displacements, strains and stresses in the context of plane stress visco-hyperelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Areias P, Matous K (2008) Finite element formulation for modeling nonlinear viscoelastic elastomers. Comput Methods Appl Mech Eng 197:4702–4717

    Article  Google Scholar 

  2. Hasanpour K, Ziaei-Rad S, Mahzoon M (2009) A large deformation framework for compressible viscoelastic materials: constitutive equations and finite element implementation. Int J Plast 25:1154–1176

    Article  Google Scholar 

  3. Rauchs C (2010) Finite element implementation including sensitivity analysis of a simple finite strain viscoelastic constitutive law. Comput Struct 88:825–836

    Article  Google Scholar 

  4. Lejeunes S, Boukamel A, Méo S (2011) Finite element implementation of nearly incompressible rheological models based on multiplicative decompositions. Comput Struct 89:411–421

    Article  Google Scholar 

  5. Naghdabadi R, Baghani M, Arghavani J (2012) A viscoelastic constitutive model for compressible polymers based on logarithmic strain and its finite element implementation. Finite Elem Anal Des 62:18–27

    Article  MathSciNet  Google Scholar 

  6. Pascon JP, Coda HB (2017) Finite deformation analysis of visco-hyperelastic materials via solid tetrahedral finite elements. Finite Elem Anal Des 133:25–41

    Article  MathSciNet  Google Scholar 

  7. Sidoroff F (1974) Un modèle viscoélastique non linéaire avec configuration intermédiaire. J Mec 13(4):679–713

    MathSciNet  MATH  Google Scholar 

  8. Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12:93–99

    Article  Google Scholar 

  9. Kroon M (2011) A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime. Mech Time Depend Mater 15:389–406

    Article  Google Scholar 

  10. Kirchner E, Reese S, Wriggers P (1997) A finite element method for plane stress problems with large elastic and plastic deformations. Commun Numer Methods Eng 13:963–976

    Article  MathSciNet  Google Scholar 

  11. César de Sá JMA, Areias PMA, Natal Jorge RM (2001) Quadrilateral elements for the solution of elasto-plastic finite strain problems. Int J Numer Methods Eng 51:883–917

    Article  MathSciNet  Google Scholar 

  12. Pascon JP, Coda HB (2012) Analysis of elastic functionally graded materials under large displacements via high-order tetrahedral elements. Finite Elem Anal Des 50:33–47

    Article  Google Scholar 

  13. Pascon JP, Coda HB (2013) A shell finite element formulation to analyze highly deformable rubber-like materials. Lat Am J Solids Struct 10:1177–1209

    Article  Google Scholar 

  14. Pascon JP (2016) Finite element analysis of flexible functionally graded beams with variable Poisson’s ratio. Eng Comput 33:2421–2447

    Article  Google Scholar 

  15. Suri M (1996) Analytical and computational assessment of locking in the hp finite element method. Comput Methods Appl Mech Eng 133:347–371

    Article  MathSciNet  Google Scholar 

  16. Hakula H, Leino Y, Pitkäranta J (1996) Scale resolution, locking, and high-order finite element modelling of shells. Comput Methods Appl Mech Eng 133:157–182

    Article  Google Scholar 

  17. Düster A, Hartmann S, Rank E (2003) p-FEM applied to finite isotropic hyperelastic bodies. Comput Methods Appl Mech Eng 192:5147–5166

    Article  Google Scholar 

  18. Jabareen M, Rubin MB (2014) A six node plane strain triangular Cosserat point element (CPE) for nonlinear elasticity. Int J Eng Sci 74:118–142

    Article  MathSciNet  Google Scholar 

  19. Coda HB, Greco M (2004) A simple FEM formulation for large deflection 2D frame analysis based on position description. Comput Methods Appl Mech Eng 193:3541–3557

    Article  Google Scholar 

  20. Coda HB, Paccola RR (2007) An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements. Comput Mech 40:185–200

    Article  Google Scholar 

  21. Latorre M, Montáns FJ (2016) Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains. Comput Struct 163:56–70

    Article  Google Scholar 

  22. Sze KY, Zheng SJ, Lo SH (2004) A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem Anal Des 40:319–340

    Article  Google Scholar 

  23. Holzapfel GA (2004) Nonlinear solid mechanics—a continuum approach for engineering. Wiley, Chichester

    Google Scholar 

  24. Petiteau JC, Verron E, Othman R, Le Sourne H, Sigrist JF, Barras G (2013) Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations. Mech Time Depend Mater 17:349–367

    Article  Google Scholar 

  25. Huber N, Tsakmakis C (2000) Finite deformation viscoelasticity laws. Mech Mater 32:1–18

    Article  Google Scholar 

  26. Weber G, Anand L (1990) Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput Methods Appl Mech Eng 79:173–202

    Article  Google Scholar 

  27. Montáns FJ, Benítez JM, Caminero MA (2012) A large strain anisotropic elastoplastic continuum theory for nonlinear kinematic hardening and texture evolution. Mech Res Commun 43:50–56

    Article  Google Scholar 

  28. Ganjiani M, Naghdabadi R, Asghari M (2012) An elastoplastic damage-induced anisotropic constitutive model at finite strains. Int J Damage Mech 22:499–529

    Article  Google Scholar 

  29. Grilo TJ, Vladimirov IN, Valente RAF, Reese S (2016) On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming. Comput Mech 57:931–946

    Article  Google Scholar 

  30. Reese S, Küssner M, Reddy BD (1999) A new stabilization technique for finite elements in non-linear elasticity. Int J Numer Methods Eng 44:1617–1652

    Article  MathSciNet  Google Scholar 

  31. Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2D compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631

    Article  MathSciNet  Google Scholar 

  32. Reese S (2003) On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain problems. Int J Numer Methods Eng 57:1095–1127

    Article  Google Scholar 

  33. Steinmann P, Betsch P, Stein E (1997) FE plane stress analysis incorporating arbitrary 3D large strain constitutive models. Eng Comput 14:175–201

    Article  Google Scholar 

  34. Köhler O, Kuhn G (2001) The domain-boundary element method (DBEM) for hyperelastic and elastoplastic finite deformation: axisymmetric and 2D/3D problems. Arch Appl Mech 71:436–452

    Article  Google Scholar 

Download references

Acknowledgements

The author appreciates all the essential support given by the following two departments, both the University of São Paulo (USP), the Materials Engineering Department of the Lorena School of Engineering (DEMAR/EEL), for providing the necessary infrastructure to carry out the work and the Structural Engineering Department of the São Carlos School of Engineering (SET/EESC) for allowing the remote access to their cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Pascon.

Additional information

Technical Editor: Paulo de Tarso Rocha de Mendonça, Ph.D.

Appendices

Appendix 1: Viscous incompressibility

The viscous incompressibility can be shown by determining the rate of the squared viscous Jacobian from expression (24):

$$\begin{aligned} \mathop {\overline{{\left( {J^{v} } \right)^{2} }} }\limits^{ \cdot } & = \frac{{\partial \left( {J^{v} } \right)^{2} }}{{\partial {\mathbf{C}}^{v} }} :\mathop {{\mathbf{C}}^{v} }\limits^{ \cdot } = \left[ {\left( {J^{v} } \right)^{2} \left( {{\mathbf{C}}^{v} } \right)^{ - 1} } \right] :\left[ {\frac{2}{\eta }{\text{dev}}\left( {{\mathbf{CS}}_{q} } \right){\mathbf{C}}^{v} } \right] = \left( {J^{v} } \right)^{2} \frac{2}{\eta }{\mathbf{I}} :\left[ {{\text{dev}}\left( {{\mathbf{CS}}_{q} } \right)} \right] \\ & = \left( {J^{v} } \right)^{2} \frac{2}{\eta }{\text{tr}}\left[ {{\text{dev}}\left( {{\mathbf{CS}}_{q} } \right)} \right] = 0 \\ \end{aligned}$$
(42)

Moreover, since the initial value of the viscous Jacobian is always unitary, then:

$$\left( {J^{v} } \right)^{2} = J^{v} = 1$$
(43)

In other words, the viscous strain is incompressible, as assumed in finite elastoplasticity.

Appendix 2: Derivatives of stress tensor S

From the last result of expression (27), one can obtain the following consistent tangent operator:

$$\frac{{\partial {\mathbf{S}}}}{{\partial {\mathbf{C}}}} = \frac{\partial }{{\partial {\mathbf{C}}}}\left[ { - C_{33} \left( {\mu_{\infty } + \frac{{\mu_{e} }}{{C_{33}^{v} }}} \right)\left( {{\mathbf{C}}^{ - 1} } \right)} \right] = - \left( {\mu_{\infty } + \frac{{\mu_{e} }}{{C_{33}^{v} }}} \right)\left( {{\mathbf{C}}^{ - 1} } \right) \otimes \frac{{\partial C_{33} }}{{\partial {\mathbf{C}}}} - C_{33} \left( {\mu_{\infty } + \frac{{\mu_{e} }}{{C_{33}^{v} }}} \right)\frac{{\partial \left( {{\mathbf{C}}^{ - 1} } \right)}}{{\partial {\mathbf{C}}}}$$
(44)

where symbol \(\otimes\) represents the tensor product. The derivatives of stress tensor S regarding the viscous stretch tensor Cv has been neglected in (44), since the consistent tangent operator above is used along the elastic prediction phase. The derivative \(\partial C_{33} /\partial {\mathbf{C}}\) can be found using a scalar auxiliary variable defined from the last result of (26):

$$f = C_{11} C_{22} - C_{12}^{2} = \frac{1}{{C_{33} }}\left\{ {\exp \left[ {\frac{{\mu_{\infty } \left( {1 - C_{33} } \right) + \mu_{e} - \mu_{e} \frac{{C_{33} }}{{C_{v33} }}}}{{K_{\infty } + K_{e} }}} \right]} \right\}^{2}$$
(45)

This scalar can be understood as the determinant of the plane tensor C (with dimensions 2 × 2). Applying the definition (45), one can obtain the following result:

$$\frac{{\partial C_{33} }}{{\partial {\mathbf{C}}}} = \frac{{\partial C_{33} }}{\partial f}\frac{\partial f}{{\partial {\mathbf{C}}}} = \left( {\frac{\partial f}{{\partial C_{33} }}} \right)^{ - 1} \frac{\partial f}{{\partial {\mathbf{C}}}}$$
(46)
$$\frac{\partial f}{{\partial {\mathbf{C}}}} = {\text{adj}}\left( {\mathbf{C}} \right) = \left[ {\begin{array}{*{20}c} {C_{22} } & { - C_{12} } \\ { - C_{12} } & {C_{11} } \\ \end{array} } \right]$$
(47)
$$\frac{\partial f}{{\partial C_{33} }} = - \frac{f}{{C_{33} }} + \frac{2}{{C_{33} }}\left\{ {\exp \left[ {\frac{{\mu_{\infty } \left( {1 - C_{33} } \right) + \mu_{e} - \mu_{e} \frac{{C_{33} }}{{C_{v33} }}}}{{K_{\infty } + K_{e} }}} \right]} \right\}^{2} \left( {\frac{{ - \mu_{\infty } - \frac{{\mu_{e} }}{{C_{v33} }}}}{{K_{\infty } + K_{e} }}} \right)$$
(48)

where \({\text{adj}}\left( {} \right)\) denotes the adjugate matrix.

The remaining derivate in (44) is determined from the inverse of tensor C:

$${\mathbf{C}}^{ - 1} = \frac{1}{{C_{11} C_{22} - C_{12}^{2} }}\left[ {\begin{array}{*{20}c} {C_{22} } & { - C_{12} } \\ { - C_{12} } & {C_{11} } \\ \end{array} } \right] = \frac{1}{f}{\text{adj}}\left( {\mathbf{C}} \right)$$
(49)
$$\frac{{\partial {\mathbf{C}}^{ - 1} }}{{\partial {\mathbf{C}}}} = {\text{adj}}\left( {\mathbf{C}} \right) \otimes \frac{\partial }{{\partial {\mathbf{C}}}}\left( {\frac{1}{f}} \right) + \frac{1}{f}\frac{{\partial {\text{adj}}\left( {\mathbf{C}} \right)}}{{\partial {\mathbf{C}}}}$$
(50)

Using expressions (45) and (47), one can find the following derivatives:

$$\frac{\partial }{{\partial {\mathbf{C}}}}\left( {\frac{1}{f}} \right) = - \frac{1}{{f^{2} }}\frac{\partial f}{{\partial {\mathbf{C}}}} = - \frac{1}{{f^{2} }}\left[ {\begin{array}{*{20}c} {C_{22} } & { - 2C_{12} } \\ { - 2C_{12} } & {C_{11} } \\ \end{array} } \right]$$
(51)
$$\frac{{\partial {\text{adj}}\left( {\mathbf{C}} \right)_{11} }}{{\partial C_{22} }} = \frac{{\partial {\text{adj}}\left( {\mathbf{C}} \right)_{22} }}{{\partial C_{11} }} = - \frac{{\partial {\text{adj}}\left( {\mathbf{C}} \right)_{12} }}{{\partial C_{12} }} = - \frac{{\partial {\text{adj}}\left( {\mathbf{C}} \right)_{21} }}{{\partial C_{12} }} = 1$$
(52)

where the remaining terms of \(\partial {\text{adj}}\left( {\mathbf{C}} \right)/\partial {\mathbf{C}}\) are null.

Along the viscous update, the derivative of stress tensor S regarding viscous tensor Cv is needed. From the compact form (27):

$$\frac{{\partial {\mathbf{S}}}}{{\partial {\mathbf{C}}^{v} }} = - \left( {\mu_{\infty } + \frac{{\mu_{e} }}{{C_{33}^{v} }}} \right){\mathbf{C}}^{ - 1} \otimes \frac{{\partial C_{33} }}{{\partial {\mathbf{C}}^{v} }} - C_{33} \mu_{e} {\mathbf{C}}^{ - 1} \otimes \frac{\partial }{{\partial {\mathbf{C}}^{v} }}\left( {\frac{1}{{C_{33}^{v} }}} \right) + \mu_{e} \frac{{\partial \left( {{\mathbf{C}}^{v} } \right)^{ - 1} }}{{\partial {\mathbf{C}}^{v} }}$$
(53)

The derivative of C33 is obtained from (45):

$$\frac{{\partial C_{33} }}{{\partial {\mathbf{C}}_{v} }} = \frac{{\partial C_{33} }}{\partial f}\frac{\partial f}{{\partial {\mathbf{C}}_{v} }} = \left( {\frac{\partial f}{{\partial C_{33} }}} \right)^{ - 1} \frac{\partial f}{{\partial {\mathbf{C}}_{v} }}$$
(54)
$$\frac{\partial f}{{\partial {\mathbf{C}}_{v} }} = - 2\left\{ {{ \exp }\left[ {\frac{{\mu_{\infty } \left( {1 - C_{33} } \right) + \mu_{e} - \mu_{e} \frac{{C_{33} }}{{C_{v33} }}}}{{K_{\infty } + K_{e} }}} \right]} \right\}^{2} \frac{{\mu_{e} }}{{K_{\infty } + K_{e} }}\frac{\partial }{{\partial {\mathbf{C}}_{v} }}\left( {\frac{1}{{C_{v33} }}} \right)$$
(55)

To determine the derivative of the inverse of the component \(C_{33}^{v}\), one can use the viscous incompressibility Eq. (25):

$$\frac{\partial }{{\partial {\mathbf{C}}_{v} }}\left( {\frac{1}{{C_{v33} }}} \right) = \left[ {\begin{array}{*{20}c} {C_{v22} } & { - C_{v21} } \\ { - C_{v12} } & {C_{v11} } \\ \end{array} } \right] = {\text{adj}}\left( {{\mathbf{C}}^{v} } \right)$$
(56)

Finally, the derivative \(\partial \left( {{\mathbf{C}}^{v} } \right)^{ - 1} /\partial {\mathbf{C}}^{v}\) can be obtained in the same way as performed in (49) and (50).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascon, J.P. High-order triangular finite elements applied to visco-hyperelastic materials under plane stress. J Braz. Soc. Mech. Sci. Eng. 40, 535 (2018). https://doi.org/10.1007/s40430-018-1453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1453-5

Keywords

Navigation