Structural analysis, survey and classification of kinematic chains for Atkinson cycle engines

  • Daniel Martins
  • Torsten Frank
  • Henrique Simas
  • Rodrigo de Souza Vieira
  • Roberto Simoni
  • Estevan Hideki Murai
  • Thiago Hoeltgebaum
Technical Paper
  • 54 Downloads

Abstract

This paper presents an Atkinson Cycle mechanisms classification. The proposed classification is based on mechanism theory, dividing the mechanisms into two main classes and eight subclasses. The reconfigurability of Atkinson Cycle mechanisms is discussed as well as the mechanism characteristics for each class. This classification was applied to the engines found in bibliography and patent survey. Both surveys were necessary to yield a complete state of the art, regarding not only academic but also technological advances. These surveys and the Atkinson Cycle engine classification expose the wide window of opportunities for engine development. The use of reconfigurable Atkinson Cycle engines can be a powerful tool to develop more efficient vehicles.

Keywords

Atkinson Cycle internal combustion engines mechanism theory patent survey Atkinson Cycle engines classification reconfigurability 

Notes

Acknowledgements

The authors would like to thank UFSC, CAPES, CNPQ and BMW group. The work was supported by BMW under the InovarAuto program.

References

  1. 1.
    Atkinson J (1880) Atkinson cycle engine. US 367496 AGoogle Scholar
  2. 2.
    Gheorghiu V (2010) In: ASME 2010 10th biennial conference on engineering systems design and analysis (American Society of Mechanical Engineers, 2010), pp 9–20.  https://doi.org/10.1115/ESDA2010-24031
  3. 3.
    Pulkrabek WW (2014) Engineering fundamentals of the internal combustion engine. Pearson Prentice Hall Upper Saddle River, NJGoogle Scholar
  4. 4.
    Heywood JB (1988) Internal combustion engine fundamentals, vol 930. Mcgraw-hill, New YorkGoogle Scholar
  5. 5.
    Ganesan V (2010) Internal combustion engines. McGraw Hill Education, New YorkGoogle Scholar
  6. 6.
    Gupta HN (2012) Fundamentals of internal combustion engines. PHI Learning Pvt. Ltd., New DelhiGoogle Scholar
  7. 7.
    Stone R (1990) Introduction to internal combustion engines. Springer, New YorkGoogle Scholar
  8. 8.
    Ferguson CR, Kirkpatrick AT (2015) Internal combustion engines: applied thermosciences. John Wiley & Sons, HobokenGoogle Scholar
  9. 9.
    Otto NA (1877) Improvement in gas-motor engines. US 194047Google Scholar
  10. 10.
    Ralph M (1957) Supercharged engine. US 2817322Google Scholar
  11. 11.
    Gheorghiu V (2011) In: ASME international mechanical engineering congress and expositionGoogle Scholar
  12. 12.
    Gheorghiu V (2010) In: International conference on heat transfer, fluid mechanics and thermodynamics, HEFAT 2010.  https://doi.org/10.4271/2010-01-1511
  13. 13.
    Gheorghiu V, Ueberschär D (2007) In: International conference on heat transfer, fluid mechanics and thermodynamics, HEFAT 2007Google Scholar
  14. 14.
    Dorić J, Klinar I (2011) Realisation and analysis of a new thermodynamic cycle for internal combustion engines. Thermal Sci 15(4):961.  https://doi.org/10.2298/TSCI101010041D CrossRefGoogle Scholar
  15. 15.
    Watanabe S, Koga H, Kono SAE (2006) Technical paper-32-0101.  https://doi.org/10.4271/2006-32-0101
  16. 16.
    Li T, Wang B, Zheng B (2016) A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion. Energy Convers Manage 123:140.  https://doi.org/10.1016/j.enconman.2016.06.038 CrossRefGoogle Scholar
  17. 17.
    Gheorghiu V (2010) In: ASME-ATI-UIT 2010-conference on thermal and enviromental issues in energy systemsGoogle Scholar
  18. 18.
    Gheorghiu (2013) Internal combustion engine operating according to the real four-stroke Atkinson cycle and method for load control. DE 102013003682 A1Google Scholar
  19. 19.
    Al-Sarkhi A, Akash B, Abu-Nada E, Al-Hinti I (2008) JJMIE 2(2):71–75Google Scholar
  20. 20.
    Hou SS (2007) Comparison of performances of air standard Atkinson and Otto cycles with heat transfer considerations. Energy Convers Manage 48(5):1683.  https://doi.org/10.1016/j.enconman.2006.11.001 CrossRefGoogle Scholar
  21. 21.
    Banowetz DL (1999) Synthesis and analysis of variable, non-uniform stroke piston engine mechanisms. Master’s thesis, Lehigh UniversityGoogle Scholar
  22. 22.
    Good TA (1995) Optimum non-uniform stroke piston engine systhesis. Master’s thesis, Lehigh UniversityGoogle Scholar
  23. 23.
    Murphy J (2009) Toyota builds thicket of patents around hybrid To block competitors. Wall Street JGoogle Scholar
  24. 24.
    Dai JS, Kong X, Zoppi M (2009) Reconfigurable mechanisms and robots. KC Edizioni, GenovaGoogle Scholar
  25. 25.
    Dai JS, Zoppi M, Kong X (2012) Advances in reconfigurable mechanisms and robots I. Springer, LondonCrossRefGoogle Scholar
  26. 26.
    Ding X, Kong X, Dai JS (2015) Advances in reconfigurable mechanisms and mobots II. Springer, LondonGoogle Scholar
  27. 27.
    Hiromu N (1992) Internal combustion engine. EP 0570627 A1Google Scholar
  28. 28.
    Bonfa E (1930) Improvements relating to four-stroke-cycle internal-combustion engines. GB 346592 AGoogle Scholar
  29. 29.
    Honda Motor Company (2001) Four-cycle engine. JP 2002349303 AGoogle Scholar
  30. 30.
    Isamu N (1981) Crank mechanism for internal-combustion engine. JPS 588233 AGoogle Scholar
  31. 31.
    Mohtashemi B (2010) Radial internal combustion engine with different stroke volumes. US 20110226199 A1Google Scholar
  32. 32.
    Inden M (2011) Reciprocating piston mechanism with extended piston offset. US 8826800 B2Google Scholar
  33. 33.
    Inden M (2012) Reciprocating piston mechanism with extended piston offset. US 8839687 B2Google Scholar
  34. 34.
    Audi AG (2010) Internal-combustion engine has crankshaft and eccentric shaft that are provide d for extension of expansion stroke from pistons of internal-combustion engine by piston rods and coupling element is connected with crankshaft. DE 102010027351 B4Google Scholar
  35. 35.
    Nissan Motor Company (2006) Cycle variable stroke engine. JP 2008111397 AGoogle Scholar
  36. 36.
    Honda Motor Company (2005) Stroke-variable engine. US 7661395 B2Google Scholar
  37. 37.
    Nelson CD (1983) Variable stroke engine. US 4517931 AGoogle Scholar
  38. 38.
    Achterberg RC (1998) Variable compression and asymmetrical stroke internal combustion engine. US 6230671 B1Google Scholar
  39. 39.
    Honda Motor Company (2002) Variable stroke engine. US 7185615 B2Google Scholar
  40. 40.
    Honda Motor Company (2005) Stroke-variable engine. US 7305938 B2Google Scholar
  41. 41.
    Zhu X (2010) Double-crankshaft-contained variable-compression-ratio atkinson-cycle internal-combustion engine mechanism. CN 102536455 AGoogle Scholar
  42. 42.
    Parkins MF (1979) Internal combustion engines. US 4380972 AGoogle Scholar
  43. 43.
    Columbia University (1986) Swing beam internal-combustion engines. US 4917066 AGoogle Scholar
  44. 44.
    Gonzalez LM (1997) Variable stroke mechanism for internal combustion engine. US 5927236 AGoogle Scholar
  45. 45.
    Paul R (1981) Reciprocating piston engine with tangential drive. EP 0084542 A1Google Scholar
  46. 46.
    Audi AG (2009) Internal combustion engine having an elongated expansion stroke and an adjustable compression ratio. WO 2010086130 A1Google Scholar
  47. 47.
    GM Global Technology Operations (2012) Engine assembly with phasing mechanism on eccentric shaft for variable cycle engine. US 8794200 B2Google Scholar
  48. 48.
    Hyundai Motor Company (2008) Variable compression ratio apparatus. US 8074612 B2Google Scholar
  49. 49.
    Nissan Motor Company (2004) Internal combustion engine. US 7228838 B2Google Scholar
  50. 50.
    Tsai LW (2010) Mechanism design: enumeration of kinematic structures according to function. CRC pressGoogle Scholar
  51. 51.
    Wang PY, Hou SS (2005) Energy Convers Manag 46(15):2637.  https://doi.org/10.1016/j.enconman.2004.11.005 CrossRefGoogle Scholar
  52. 52.
    Hoeltgebaum T (2014) Variable compression ratio engines: a mechanism approach. Master’s thesis, Federal University of Santa CatarinaGoogle Scholar
  53. 53.
    Hoeltgebaum T, Simoni R, Martins D (2015) In: International conference on reconfigurable mechanisms and robots (ReMAR 2015).  https://doi.org/10.1007/978-3-319-23327-7_89
  54. 54.
    Hoeltgebaum T, Simoni R, Martins D (2016) Reconfigurability of engines: A kinematic approach to variable compression ratio engines. Mech Machine Theory 96:308.  https://doi.org/10.1016/j.mechmachtheory.2015.10.003 CrossRefGoogle Scholar
  55. 55.
    Kuo CH, Dai JS, Yan HS (2009) In: Reconfigurable mechanisms and robots. ReMAR 2009. ASME/IFToMM international conference on (IEEE, 2009), pp 1–7Google Scholar

Copyright information

© The Brazilian Society of Mechanical Sciences and Engineering 2018

Authors and Affiliations

  • Daniel Martins
    • 1
  • Torsten Frank
    • 2
  • Henrique Simas
    • 1
  • Rodrigo de Souza Vieira
    • 1
  • Roberto Simoni
    • 3
  • Estevan Hideki Murai
    • 1
  • Thiago Hoeltgebaum
    • 1
  1. 1.Federal University of Santa CatarinaFlorianópolisBrazil
  2. 2.BMW AG Munich, Am Olympiapark 1MünchenGermany
  3. 3.Federal University of Santa CatarinaJoinvilleBrazil

Personalised recommendations