Skip to main content
Log in

Historical measurement data reuse and similarity analysis for dimensional production tolerancing of injected plastic parts

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Geometrical variation is present in any production process and needs to be controlled, to ensure compliance with design requirements and minimize costs. Tolerancing of injected plastic parts (IPPs) is mostly performed in practice without using consistent criteria, many times resulting in tolerances which are unnecessarily narrow and incompatible with the respective manufacturing process capabilities. In this paper, a new method is proposed to support IPPs dimensional production tolerancing in early design phases, based on historical measurement data reuse and similarity analysis. Rule-based reasoning has been employed together with a scoring system to identify reliable and similar cases stored in a database, involving attributes of both the parts and the dimensional characteristics. Two different approaches for data recovery were considered, providing the ability to choose between a simplified and a more accurate analysis. The method feasibility is demonstrated by a case study involving 20 different IPPs and 24 dimensional characteristics from three suppliers. The proposed method outperformed the use of standard DIN 16742 to estimate production tolerances. Comparisons between the estimated production tolerances and the respective process capabilities resulted in maximum mean absolute deviation of 10% and Pearson’s r of about 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Srinivasan V (2007) Computational metrology for the design and manufacture of product geometry: a classification and synthesis. J Comput Inf Sci Eng 7:3–9. doi:10.1115/1.2424246

    Article  Google Scholar 

  2. Eifler T, Murthy BS, Howard TJ (2016) Toward meaningful manufacturing variation data in design—feature based description of variation in manufacturing processes. In: 14th CIRP conference computing aided toler, Elsevier, Gothenburg, pp 190–195

  3. Schleich B, Wartzack S (2014) How can computer aided tolerancing support closed loop tolerance engineering? In: 24th CIRP Designing Conference, Milan, Elsevier, pp 312–317

  4. Schleich B, Anwer N, Mathieu L, Wartzack S (2014) Skin model shapes: a new paradigm shift for geometric variations modelling in mechanical engineering. Comput Aided Des 50:1–15. doi:10.1016/j.cad.2014.01.001

    Article  Google Scholar 

  5. Van Wyk D (1999) Predicting assembly quality (Six Sigma methodologies to optimize tolerances), chapter 11. In: Drake PJ Jr. (ed) Dimensional tolerance handbook, 1st edn. McGraw-Hill Professional, New York, pp 1–27

    Google Scholar 

  6. Gao RX, Tang X, Gordo G, Kazmer DO (2014) Online product quality monitoring through in-process measurement. CIRP Ann Manuf Technol 63:493–496. doi:10.1016/j.cirp.2014.03.041

    Article  Google Scholar 

  7. Malloy RA (1994) Plastic part design for injection molding—an introduction, 1st edn. Carl Hanser Verlag, Munich

    Google Scholar 

  8. Deutsches Institut Für Normung (2013) DIN 16742: plastics moulded parts. Tolerances and acceptance conditions. Deutsches Institut Für Normung, Berlin

    Google Scholar 

  9. Kiam TM (2014) Previsão da contração e da variação dimensional em componentes injetados através de simulação computacional. Dissertação (Mestrado em Ciência e Engenharia de Materiais) – Universidade Federal de São Carlos, São Carlos

  10. The American Society of Mechanical Engineers (2009) ASME Y14.8: casting, forgings, and molded parts. ASME, New York

  11. International Organization for Standardization (2007) ISO 8062-1: geometrical product specifications (GPS): dimensional and geometrical tolerances for moulded parts. Part 1: vocabulary

  12. International Organization for Standardization (2013) ISO/TS 8062-2: geometrical product specifications (GPS): dimensional and geometrical tolerances for moulded parts. Part 2: rules

  13. International Organization for Standardization (2007) ISO 10135: Geometrical product specifications (GPS): drawing indications for moulded parts in technical product documentation (TPD)

  14. Deutsches Institut Für Normung (1982) DIN 16901: Kunststoff-formteile: Toleranzen und abnahmebedingungen fuer Laengenmaesse. Berlim

  15. Association Française De Normalisation (1987) NF T 58-000: plastics—tolerances for plastic moulded parts (thermosetting and thermoplastic). Paris

  16. British Standards Institution (1988) BS 7010:1988 - Code of practice for a system of tolerances for the dimensions of plastics mouldings

  17. Down MH, Kerkstra T, Cvetkovski P, Benham DR (2005) Statistical process control (SPC)—reference manual, 2nd edn. AIAG

  18. Stan D, Tulcan A, Tulcan L, Iclanzan T (2008) Influence factors on the dimensional accuracy of the plastic parts. Bucharest Mater Plast Sci Bibl Chim Sa 119–124

  19. Mascarenhas W, Ahrens C, Ogliari A (2005) Defeitos de componentes de plástico moldados por injeção: análise de causas e soluções através de um sistema CAE. 3o Congr. Bras. Eng. Fabr. Joinv

  20. Elsheikhi SA, Benyounis KY (2016) Review of recent developments in injection molding process for polymeric materials. Ref Modul Mater Sci Mater Eng. doi:10.1016/B978-0-12-803581-8.04022-4

    Google Scholar 

  21. Bharti PK, Khan MI, Singh H (2010) Recent methods for optimization of plastic injection molding process—a retrospective and literature review. Int J Eng Sci 2:4540–4554

    Google Scholar 

  22. Shelesh-Nezhad K, Siores E (1997) An intelligent system for plastic injection molding process design. J Mater Process Technol 63:458–462. doi:10.1016/S0924-0136(96)02664-7

    Article  Google Scholar 

  23. Kwong CK, Smith GF, Lau WS (1997) Application of case based reasoning injection moulding. J Mater Process Technol 63:463–467. doi:10.1016/S0924-0136(96)02665-9

    Article  Google Scholar 

  24. International Organization for Standardization (2010) ISO 286-1:2010—Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes—Part 1: Basis of tolerances, deviations and fits

  25. Okholm AB, Rask M, Ebro M, Eifler T, Holmbeg M, Howard TJ (2014) Improving process capability database usage for robust design engineering by generalising measurement data. In: Marjanovic D, Storga M, Pavkovic N, Bojcetic N (eds) 13th International design conference on, pp 1133–1144

  26. Kunzmann H, Pfeifer T, Schmitt R, Schwenke H, Weckenmann A (2005) Productive metrology—adding value to manufacture. CIRP Ann Manuf Technol 54:155–168. doi:10.1016/S0007-8506(07)60024-9

    Article  Google Scholar 

  27. Savio E, De Chiffre L, Carmignato S, Meinertz J (2016) Economic benefits of metrology in manufacturing. CIRP Ann Manuf Technol 65:495–498. doi:10.1016/j.cirp.2016.04.020

    Article  Google Scholar 

  28. Mourtzis D, Doukas M, Giannoulis C (2016) An inference-based knowledge reuse framework for historical product and production information retrieval. Procedia CIRP 41:472–477. doi:10.1016/j.procir.2015.12.026

    Article  Google Scholar 

  29. Madrid J, Valhagen J, Söderberg R, Wärmefjord K (2016) Enabling reuse of inspection data to support robust design: a case in the aerospace industry. In: 14th CIRP Conference Computing on Aided Toler (CAT), Gothenbg, Elsevier BV, Gothenburg, pp 41–46

  30. Delaney KD, Phelan P (2009) Design improvement using process capability data. J Mater Process Technol 209:619–624. doi:10.1016/j.jmatprotec.2008.02.059

    Article  Google Scholar 

  31. King MD (1999) Collecting and developing manufacturing process capability models. In: Drake Jr. P (ed) Dimensional Tolerance Handbook, 1st edn. McGraw-Hill Professional, New York, p 704

  32. Krogstie L, Martinsen K (2012) Closed loop tolerance engineering—a relational model connecting activities of product development. Procedia CIRP 3:519–524. doi:10.1016/j.procir.2012.07.089

    Article  Google Scholar 

  33. Gao J, Baxter D, Case K, Harding J, Young R, Cochrane S, Dani S (2007) An engineering design knowledge reuse methodology using process modelling. Res Eng Des 18:37–48. doi:10.1007/s00163-007-0028-8

    Article  Google Scholar 

  34. Dantan JY, Hassan A, Etienne A, Siadat A, Martin P (2008) Information modeling for variation management during the product and manufacturing process design. Int J Interact Des Manuf 2:107–118. doi:10.1007/s12008-008-0040-x

    Article  Google Scholar 

  35. Butdee S (2011) Knowledge engineering and capitalization for injection mold design. In: 3rd International conference on information and financial engineering, IACSIT Press, Singapore, pp 212–216

  36. Hu W, Masood S (2002) An intelligent cavity layout design system for injection moulds. In: International journal of CAD/CAM, Society of CAD/CAM Engineers, Melbourne, pp 69–75

  37. Efthymiou K, Sipsas K, Mourtzis D, Chryssolouris G (2013) On an integrated knowledge based framework for manufacturing systems early design phase. Procedia CIRP 9:121–126. doi:10.1016/j.procir.2013.06.179

    Article  Google Scholar 

  38. Doro MM (2009) Solução integrada para auxiliar na garantia da qualidade na produção em pequenos lotes. Tese (Doutorado em Engenharia Mecânica) – Universidade Federal de Santa Catarina, Florianópolis

  39. Seung-Seok C, Sung-Hyuk C, Tappert CC (2010) A survey of binary similarity and distance measures. J Syst Cybern Inf 8:43–48

    Google Scholar 

  40. Finch H (2005) Comparison of distance measures in cluster analysis with dichotomous data. J Data Sci 3:85–100

    Google Scholar 

  41. Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  42. Hubert M, Vandervieren E (2008) An adjusted boxplot for skewed distributions. Comput Stat Data Anal 52:5186–5201. doi:10.1016/j.csda.2007.11.008

    Article  MathSciNet  MATH  Google Scholar 

  43. Brys G, Hubert M, Struyf A (2004) A robust measure of skewness. J Comput Graph Stat 13:996–1017. doi:10.1198/106186004X12632

    Article  MathSciNet  MATH  Google Scholar 

  44. Srinivasan V (1999) Statistical tolerancing, chapter 8. In: Drake PJ Jr (ed) Dimensional tolerence handbook, 1st edn. McGraw-Hill Professional, New York, pp 1–10

    Google Scholar 

  45. International Organization for Standardization (2014) ISO 16269-6: statistical interpretation of data—Part 6: determination of statistical tolerance intervals

  46. International Organization for Standardization (2011) ISO 8015: geometrical product specifications (GPS): fundamentals: concepts, principles and rules

  47. Witkovský V (2014) On the exact two-sided tolerance intervals for univariate normal distribution and linear regression. Aust J Stat 43:279–292. doi:10.17713/ajs.v43i4.46

    Article  Google Scholar 

  48. Barbetta PA, Reis MM, Bornia AC (2010) Estatística para cursos de engenharia e informática, 3rd edn. Atlas, São Paulo

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the Academic Excellence Program—PROEX, from Capes Foundation, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademir Linhares de Oliveira.

Additional information

Technical Editor: Fernando Antônio Forcellini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A.L., Donatelli, G.D. Historical measurement data reuse and similarity analysis for dimensional production tolerancing of injected plastic parts. J Braz. Soc. Mech. Sci. Eng. 39, 4161–4175 (2017). https://doi.org/10.1007/s40430-017-0888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0888-4

Keywords

Navigation