Skip to main content
Log in

Nonlinear vibration analysis of a Timoshenko beam with concentrated mass using variational iteration method

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Complicated structures used in a wide variety of engineering fields consist of simple structural elements like beams which in some cases include one discontinuity such as a crack or mass and are more likely to vibrate with larger amplitude. In this article, considering shear deformation and rotatory inertia, transverse vibration of nonlinear Timoshenko beam carrying a concentrated mass oscillating with large amplitude is investigated using VIM. This method is a very powerful method with suitable convergence speed in which by choosing the proper Lagrange’s multiplier and Initial Function, the convergence speed could increase even more. This method would be able to present analytical solutions for linear equations and semi-analytical solutions for non-linear ones. One of the greatest advantages of this method is that its calculations are not dependent on the number of masses located on the beam. In this paper, along with presenting the suitable trend for determining the Lagrange’s multiplier, the effects of concentrated mass on natural frequencies in linear and non-linear states are taken into account. The obtained results, moreover, are compared with the results gained through other procedures and the accuracy and speed convergence are studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goel RP (1976) Free vibrations of a beam-mass system with elastically restrained ends. J Sound Vib 47:9–14. doi:10.1016/0022-460X(76)90404-1

    Article  MATH  Google Scholar 

  2. Maiz S, Bambill DV, Rossit CA, Laura PAA (2007) Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: exact solution. J Sound Vib 303:895–908. doi:10.1016/j.jsv.2006.12.028

    Article  Google Scholar 

  3. Salarieh H, Ghorashi M (2006) Free vibration of Timoshenko beam with finite mass rigid tip load and flexural-torsional coupling. Int J Mech Sci 48:763–779. doi:10.1016/j.ijmecsci.2006.01.008

    Article  MATH  Google Scholar 

  4. Lin HY, Tsai YC (2007) Free vibration analysis of a uniform multi-span carrying multiple spring-mass systems. J Sound Vib 302:442–456. doi:10.1016/j.jsv.2006.06.080

    Article  Google Scholar 

  5. Wu JS, Hsu SH (2007) The discrete methods for free vibration analyses of an immersed beam carrying an eccentric tip mass with rotary inertia. Ocean Eng 34:54–68. doi:10.1016/j.oceaneng.2005.12.003

    Article  Google Scholar 

  6. Karami G, Malekzadeh P, Shahpari SA (2003) A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. Eng Struct 25:1169–1178. doi:10.1016/S0141-0296(03)00065-8

    Article  Google Scholar 

  7. Wu JS, Chen CT (2007) A lumped-mass TMM for free vibration analysis of a multi-step Timoshenko beam carrying eccentric lumped masses with rotary inertias. J Sound Vib 301:878–897. doi:10.1016/j.jsv.2006.10.022

    Article  Google Scholar 

  8. Mamandi A, Kargarnovin MH, Farsi S (2010) An investigation on effects of traveling mass with variable velocity on nonlinear dynamic response of an inclined Timoshenko beam with different boundary conditions. Int J Mech Sci 52:1694–1708. doi:10.1016/j.ijmecsci.2010.09.003

    Article  Google Scholar 

  9. Torabi K, Jafarzadeh A, Zafari E (2014) Exact closed form solution for the analysis of the transverse vibration modes of a Timoshenko beam with multiple concentrated masses. Appl Math Comput 238:342–357. doi:10.1016/j.amc.2014.04.019

    MathSciNet  MATH  Google Scholar 

  10. Ozkaya E (2002) Non-linear transverse vibrations of a simply supported beam carrying concentrated masses. J Sound Vib 257(3):413–424. doi:10.1006/jsvi.2002.5042

    Article  Google Scholar 

  11. Rao GV, Saheb KM, Janardhan GR (2006) Fundamental frequency for large amplitude vibrations of uniform Timoshenko beams with central point concentrated mass using coupled displacement field method. J Sound Vib 298(1):221–232. doi:10.1016/j.jsv.2006.05.014

    Google Scholar 

  12. He JH (1999) Variational iteration method - A kind of non-linear analytical technique: some examples. Int J Non-Linear Mech 34(4):699–708. doi:10.1016/S0020-7462(98)00048-1

    Article  MathSciNet  MATH  Google Scholar 

  13. He JH (2000) Variational iteration method for autonomous ordinary differential systems. Appl Math Comput 114(2/3):115–123. doi:10.1016/S0096-3003(99)00104-6

    MathSciNet  MATH  Google Scholar 

  14. He JH (1997) Variational iteration method for delay differential equations. Commun Nonlin Sci Num Simul 2(4):235–236. doi:10.1016/S1007-5704(97)90008-3

    Article  Google Scholar 

  15. Wang SQ, He JH (2007) Variational iteration method for solving integro-differential equations. Phys Lett A 367(3):188–191. doi:10.1016/j.physleta.2007.02.049

    Article  MathSciNet  MATH  Google Scholar 

  16. He JH (2007) Variational iteration method—some recent results and new interpretations. J Comput Appl Math 207(1):3–17. doi:10.1016/j.cam.2006.07.009

    Article  MathSciNet  MATH  Google Scholar 

  17. Ozturk B (2009) Free Vibration Analysis of Beam on Elastic Foundation by the Variational Iteration Method. Int J Nonlinear Sci Number Simul 10(10):1255–1262. doi:10.1515/IJNSNS.2009.10.10.1255

    Google Scholar 

  18. Coskun SB, Atay MT, Ozturk B (2011) Transverse vibration analysis of euler-bernoulli beams using analytical approximate techniques. In: Ebrahimi F (ed) Advances in vibration analysis research. InTech, Croatia, pp 1–22

    Google Scholar 

  19. Siddiqi S, Iftikhar M (2014) Variational iteration method for the solution of seventh order boundary value problems using He’s polynomials. J Assoc Arab Uni Basic Appl Sci 18:60–65. doi:10.1016/j.jaubas.2014.03.001

    Google Scholar 

  20. Jafari H (2014) A comparison between the variational iteration method and the successive approximations method. Appl Math Lett 32:1–5. doi:10.1016/j.aml.2014.02.004

    Article  MathSciNet  MATH  Google Scholar 

  21. Al-Sawoor A, Al-Amr M (2014) A new modification of variational iteration method for solving reaction–diffusion system with fast reversible reaction. J Egyptian Math Soc 22:396–401. doi:10.1016/j.joems.2013.12.011

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghaneai H, Hosseini M (2015) Variational iteration method with an auxiliary parameter for solving wave-like and heat-like equations in large domains. Comput Math Appl 69:363–373. doi:10.1016/j.camwa.2014.11.007

    Article  MathSciNet  Google Scholar 

  23. Chen Y, Zhang J, Zhang H, Li X, Zhou J (2015) Re-examination of natural frequencies of marine risers by variational iteration method. Ocean Eng 94:132–139. doi:10.1016/j.oceaneng.2014.11.026

    Article  Google Scholar 

  24. Martin O (2016) A modified variational iteration method for the analysis of viscoelastic beams. Appl Math Modell 40:7988–7995. doi:10.1016/j.apm.2016.04.011

    Article  MathSciNet  Google Scholar 

  25. Khuri SA, Sayfy A (2017) Generalizing the variational iteration method for BVPs: proper setting of the correction functional. Appl Math Lett 68:68–75. doi:10.1016/j.aml.2016.11.018

    Article  MathSciNet  MATH  Google Scholar 

  26. Wazwaz AM (2009) Partial differential equations and solitary waves theory. Higher Education Press, Chicago

    Book  MATH  Google Scholar 

  27. Wazwaz AM (2011) Linear and nonlinear integral equations (methods and applications). Higher Education Press, Chicago

    Book  MATH  Google Scholar 

  28. Feng Y, Bert CW (1992) Application of the quadrature method to flexural vibration analysis of a geometrically nonlinear beam. Nonlinear Dyn 3:13–18. doi:10.1007/BF00045468

    Article  Google Scholar 

  29. Foda MA (1999) Influence of shear deformation and rotary inertia on nonlinear free vibration of a beam with pinned ends. Comput Struct 71:663–670. doi:10.1016/S0045-7949(98)00299-5

    Article  Google Scholar 

  30. Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48:1749–1761. doi:10.1016/j.ijengsci.2010.09.025

    Article  MathSciNet  MATH  Google Scholar 

  31. Bhashyam GR, Prathap G (1980) Galerkin finite element method for non-linear beam vibrations. J Sound Vib 72(2):191–203. doi:10.1016/0022-460X(80)90652-5

    Article  MATH  Google Scholar 

  32. Barari A, Kaliji HD, Ghadimi M, Domairry G (2011) Non-linear vibration of Euler-Bernoulli beams. Lat Am J Solids Struct 8:139–148. doi:10.1590/S1679-78252011000200002

    Article  Google Scholar 

  33. Rao GV, Raju KK (2002) A numerical integration method to study the large amplitude vibrations of slender beams with immovable ends. J Inst Eng 83:42–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Torabi.

Additional information

Technical Editor: Kátia Lucchesi Cavalca Dedini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabi, K., Sharifi, D. & Ghassabi, M. Nonlinear vibration analysis of a Timoshenko beam with concentrated mass using variational iteration method. J Braz. Soc. Mech. Sci. Eng. 39, 4887–4894 (2017). https://doi.org/10.1007/s40430-017-0854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0854-1

Keywords

Navigation