Skip to main content
Log in

Dynamics of spreading of impinged droplets on the curved-grooved surface

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Impact of droplets on rough surfaces has many industrial applications. Various types of splashing and spreading of liquid droplets result due to impingement of the droplets on the different surfaces incorporating formation of satellite droplets. Dynamics of splashing and spreading is different with respect to the point of impact—groove or hill—on the grooved surface. Physics of spreading of impacted droplets on the curved-grooved surfaces is not known so far. Impact of droplets on curved-grooved surface has been studied for a narrow range of Weber number to know the abrupt change in projected area of splashed droplets. Such abrupt change in the geometry of splashed droplets due to exaggerated elongation in the direction of groove was observed for narrow range of Weber numbers from 42 to 45. The present findings explore new direction for further fundamental research work to comprehend the physics of dynamics of impacted droplets for development of new theory helpful for spray painting, printing, and designing of shielding structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dupuy PM, Kleinohl N, Fernandino M, Jakobsen HA, Svendsen HF (2010) Droplet-surface impact at high pressures. Chem Eng Sci 65:5320–5343

    Article  Google Scholar 

  2. Pan KL, Hung CY (2010) Droplet impact upon a wet surface with varied fluid and surface properties. J Colloid Interface Sci 352:186–193

    Article  Google Scholar 

  3. Wang MJ, Hung YL, Lin FH, Lin SY (2009) Dynamic behaviors of droplet impact and spreading: a universal relationship study of dimensionless wetting diameter and droplet height. Exp Therm Fluid Sci 33:1112–1118

    Article  Google Scholar 

  4. Sikalo S, Tropea C, Ganic EN (2005) Impact of droplets onto inclined surfaces. J Colloid Interface Sci 286:661–669

    Article  Google Scholar 

  5. Bolleddula DA, Berchielli A, Aliseda A (2010) Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry. Adv Colloid Interface Sci 159:144–159

    Article  Google Scholar 

  6. Brunet P, Lapierre F, Zoueshitagh F, Thomy V, Merlen A (2009) To grate a liquid into tiny droplets by its impact on a hydrophobic microgrid. Appl Phys Lett 95:254102

    Article  Google Scholar 

  7. Kalantari D (2009) Liquid droplet impact onto flat and rigid surfaces: initial ejection velocity of the lamella. Fluid Dyn Mater Process 5:81–91

    Google Scholar 

  8. Sahaya GA, Gnanamoorthy R (2010) Impact force of low velocity liquid droplets measured using piezoelectric PVDF film. Colloids Surf A 356(1–3):162–168

    Article  Google Scholar 

  9. Prunet-Foch B, Legay F, Vignes-Adler M, Delmotte C (1998) Impacting emulsion drop on a steel plate: influence of the solid substrate. J Colloid Interface Sci 199:151–168

    Article  Google Scholar 

  10. Range K, Feuillebois F (1998) Influence of surface roughness on liquid droplet impact. J Colloid Interface Sci 203:16–30

    Article  Google Scholar 

  11. Cherdantsev AV, Hann DB, Hawakandamby BN, Azzopardi BJ (2017) Study of the impacts of droplets deposited from the gas core onto a gas-sheared liquid film. Int J Multiphase Flow 88:69–86

    Article  MathSciNet  Google Scholar 

  12. Choi M, Son G, Shim W (2017) A level-set method for droplet impact and penetration into a porous medium. Comput Fluids 145:153–166

    Article  MathSciNet  Google Scholar 

  13. Wu J, Huang JJ, Yan WW (2015) Lattice Boltzmann investigation of droplets impact behaviors onto a solid substrate. Colloids Surf A 484:318–328

    Article  Google Scholar 

  14. Xu MJ, Wang CJ, Lu SX (2016) Experimental study of a droplet impacting on a burning fuel liquid surface. Exp Thermal Fluid Sci 74:347–353

    Article  Google Scholar 

  15. Yamamoto K, Takezawa H, Ogata S (2016) Droplet impact on textured surfaces composed of commercial stainless razor blades. Colloids Surf A 506:363–370

    Article  Google Scholar 

  16. Moreira ALN, Moita AS, Panao MR (2010) Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful? Prog Energy Combust Sci 36:554–580

    Article  Google Scholar 

  17. Li H, Mei S, Wang L, Gao Y, Liu J (2014) Splashing phenomena of room temperature liquid metal droplet striking on the pool of the same liquid under ambient air environment. Int J Heat Fluid Flow 47:1–8

    Article  Google Scholar 

  18. Harvie DJE, Fletcher DF (2001) A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: theoretical model. Int J Heat Mass Transf 44:2633–2642

    Article  MATH  Google Scholar 

  19. Harvie DJE, Fletcher DF (2001) A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part II: validation and applications. Int J Heat Mass Transf 44:2643–2659

    Article  MATH  Google Scholar 

  20. Muradoglu M, Tasoglu S (2010) A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput Fluids 39:615–625

    Article  MathSciNet  MATH  Google Scholar 

  21. Werner SRL, Jones JR, Paterson AHJ, Archer RH, Pearce DL (2007) Droplet impact and spreading: droplet formulation effects. Chem Eng Sci 62:2336–2345

    Article  Google Scholar 

  22. Bejan A, Gobin D (2006) Contructal theory of droplet impact geometry. Int J Heat Mass Transf 49:2412–2419

    Article  MATH  Google Scholar 

  23. Yoshimitsu Z, Nakajima A, Watanabe T, Hashimoto K (2002) Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18:5818–5822

    Article  Google Scholar 

  24. Richard D, Clanet C, Quere D (2002) Contact time of a bouncing drop. Nature 417:811

    Article  Google Scholar 

  25. Sikalo S, Marengo M, Tropea C, Ganic EN (2002) Analysis of impact of droplets on horizontal surfaces. Exp Therm Fluid Sci 25:503–510

    Article  Google Scholar 

  26. Rioboo R, Voue M, Vaillant A, De Coninck J (2008) Drop impact on porous superhydrophobic polymer surfaces. Langmuir 24:14074–14077

    Article  Google Scholar 

  27. Du W, Fu T, Zhu C, Ma Y, Li HZ (2016) Breakup dynamics for high-viscosity droplet formation in a flow-focusing device: symmetrical and asymmetrical ruptures. AIChE J 62:325–337

    Article  Google Scholar 

  28. Solsvik J, Skjervold Vidar T, Han L, Luo H, Jakobsen Hugo A (2016) A theoretical study on drop breakup modeling in turbulent flows: the inertial subrange versus the entire spectrum of isotropic turbulence. Chem Eng Sci 149:249–265

    Article  Google Scholar 

  29. Lad VN, Murthy ZVP (2015) Dynamics of free liquid jets affected by obstructions at the jet entrance. Fluid Dyn Mater Process 11:241–255

    Google Scholar 

  30. Behzad M, Ashgriz N, Karney BW (2016) Surface breakup of a non-turbulent liquid jet injected into a high pressure gaseous crossflow. Int J Multiph Flow 80:100–117

    Article  MathSciNet  Google Scholar 

  31. Pillai DS, Picardo JR, Pushpavanam S (2014) Shifting and breakup instabilities of squeezed elliptic jets. Int J Multiph Flow 67:189–199

    Article  MathSciNet  Google Scholar 

  32. Yu G, Dong J, Foster LM, Metaxas AE, Truskett TM, Johnston KP (2015) Breakup of oil jets into droplets in seawater with environmentally benign nanoparticle and surfactant dispersants. Ind Eng Chem Res 54:4243–4251

    Article  Google Scholar 

  33. Lad VN, Murthy ZVP (2016) Effects of the geometric orientations of the nozzle exit on the breakup of free liquid jet. J Mech Sci Tech 30:1625–1630

    Article  Google Scholar 

  34. Lad VN, Murthy ZVP (2017) Breakup of free liquid jets influenced by external mechanical vibrations. Fluid Dyn Res 49:15503

    Article  Google Scholar 

  35. Toor A, Helms BA, Russell TP (2017) Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets. Nano Lett 17:3119–3125

    Article  Google Scholar 

  36. Aboud DGK, Kietzig A-M (2015) Splashing threshold of oblique droplet impacts on surfaces of various wettability. Langmuir 31:10100–10111

    Article  Google Scholar 

  37. Jin Z, Zhang H, Yang Z (2016) The impact and freezing processes of a water droplet on a cold surface with different inclined angles. Int J Heat and Mass Transfer 103:886–893

    Article  Google Scholar 

  38. Patil ND, Bhardwaj R, Sharma A (2016) Droplet impact dynamics on micropillared hydrophobic surfaces. Exp Therm Fluid Sci 74:195–206

    Article  Google Scholar 

  39. Li L, Breedveld V, Hess DW (2013) Hysteresis controlled water droplet splitting on superhydrophobic paper. Colloid Polym Sci 291(2):417–426

    Article  Google Scholar 

  40. Wang L, Zhang R, Zhang X, Hao P (2017) Numerical simulation of droplet impact on textured surfaces in a hybrid state. Microfluid Nanofluid 21. doi:10.1007/s10404-017-1900-0

  41. Deendarlianto TY, Kohno M, Hidaka S, Wakui T, Majid AI, Kuntoro HY, Indarto WA (2016) The effects of the surface roughness on the dynamic behavior of the successive micrometric droplets impacting onto inclined hot surfaces. Int J Heat Mass Transf 101:1217–1226

    Article  Google Scholar 

  42. Jin Z, Wang Z, Sui D, Yang Z (2016) The impact and freezing processes of a water droplet on different inclined cold surfaces. Int J Heat Mass Transf 97:211–223

    Article  Google Scholar 

  43. Kannan R, Sivakumar D (2008) Impact of liquid drops on a rough surface comprising microgrooves. Exp Fluids 44:927–938

    Article  Google Scholar 

  44. Lambole A, Lad VN (2017) Promising soft coating material for protection of foldable substrates exposed to corrosive environment. J Inorg Organomet Polym Mater 27:1090–1099

    Article  Google Scholar 

  45. Chen Y, He B, Lee J, Patankar NA (2005) Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci 281:458–464

    Article  Google Scholar 

  46. Roisman IV, Lembach A, Tropea C (2015) Droplet splashing induced by target roughness and porosity: the size plays no role. Adv Colloid Interface Sci 222:615–621

    Article  Google Scholar 

  47. Chang C-C, Wu C-J, Sheng Y-J, Tsao H-K (2015) Air pocket stability and the imbibitions pathway in droplet wetting. Soft Matter 11:7308–7315

    Article  Google Scholar 

Download references

Acknowledgements

Author gratefully acknowledges Prof. Omar K. Matar, Imperial College, London for fruitful discussions and suggestions provided for the work; Prof. Geoffrey Evans, University of Newcastle for his useful discussions and overview of the work. Acknowledgements are due to Sardar Vallabhbhai National Institute of Technology (SVNIT)-Surat for providing support for the experimental work. Thanks are due to Prof. Z. V. P. Murthy, SVNIT-Surat for extending the experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Lad.

Additional information

Technical Editor: Jader Barbosa Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lad, V.N. Dynamics of spreading of impinged droplets on the curved-grooved surface. J Braz. Soc. Mech. Sci. Eng. 39, 3911–3918 (2017). https://doi.org/10.1007/s40430-017-0846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0846-1

Keywords

Navigation