Skip to main content
Log in

Influence of chemically reacting species in MHD stagnation point flow of an Oldroyd-B fluid with partial slip

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This paper looks into the influence of chemically reacting species on the magnetohydrodynamics stagnation point flow and mass transfer of an electrically conducting Oldroyd-B fluid over a stretching sheet with partial slip at the surface. The slip boundary condition for a two-dimensional Oldroyd-B fluid is obtained for the first time. A similarity solution for the system of equations is obtained using finite difference method in which a coordinate transformation is employed to transform the semi-infinite physical space to a bounded computational domain. The quantities of interest like fluid velocity and concentration of species are shown graphically and discussed under the influence of emerging parameters. An excellent agreement of the present results with existing values in special cases is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

u, v :

Components of velocity in x-, y-direction [m s−1]

x, y :

Spatial coordinates [m]

a, b, d :

Constants stretching rates [s−1]

A, B :

Positive constants

u w, u e :

Wall and free stream velocities

L :

Slip length or the velocity slip parameter (velocity)−1

p :

Pressure of fluid

S :

Extra stress tensor

F :

Component of body force

k n :

nth-order homogeneous chemical reaction rate constant

B 0 :

Magnetic field [T]

f :

Dimensionless velocity

c :

Particle concentration

a i :

Components of acceleration vector

D :

Diffusion coefficient of the diffusing species in the fluid

Sc :

Schmidt number [=ν/D]

M 2 :

Hartmann number [=σB 20 /ρb]

η :

Similarity variable

τ :

Cauchy stress tensor

δ :

Components of identity tensor

μ :

Dynamics viscosity

ν :

Kinematics viscosity [m2 s−1]

γ 1, γ 2 :

Relaxation and retardation times [s−1]

σ :

Electrical conductivity of fluid [s m−1]

ϕ :

Dimensionless concentration field [=cc /c wc ]

λ 1, λ 2 :

Dimensionless fluid parameters

β :

Velocity slip parameter \([={\text{ L}}\sqrt {{\text{b/}}\nu } ]\)

γ :

Chemical reaction rate parameter [=k n /b]

ɛ :

Ratio of external flow rate to stretching rate [=a/b]

w :

Surface condition

e, ∞:

Conditions far away from the surface

n :

nth-order chemical reaction rate

References

  1. Heimenz K (1911) Die Grenzschicht an einem in den gleichförmingen Flussigkeitsstorm eingetauchten graden Kreiszylinder. Dinglers Polytech J 326:321–324

    Google Scholar 

  2. Homann F (1936) Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder and um die kugel. Z Angew Math Mech (ZAMM) 16:153–164

    Article  MATH  Google Scholar 

  3. Wang CY (2003) Stagnation flows with slip: exact solutions of Navier Stokes equations. Z Angew Math Phys (ZAMP) 54:184–189

    Article  MathSciNet  MATH  Google Scholar 

  4. Blith MG, Pozrikidis C (2005) Stagnation point flow against a liquid film on a plane wall. Acta Mech 180:203–219

    Article  MATH  Google Scholar 

  5. Crane LJ (1970) Flow past a stretching plate. J Appl Math Phys (ZAMP) 21:645–647

    Article  Google Scholar 

  6. Chiam TC (1994) Stagnation point flow towards a stretching plate. J Phys Soc Japan 63:2443–2444

    Article  Google Scholar 

  7. Mahapatra TR, Gupta AS (2002) Heat transfer in stagnation point flow towards a stretching sheet. Heat Mass Transf 38:517–521

    Article  Google Scholar 

  8. Wang CY (2008) Similarity stagnation point solutions of the Navier-Stokes equations—review and extension. Eur J Mech B 27:678–683

    Article  MathSciNet  MATH  Google Scholar 

  9. Rosali H, Ishak A, Pop I (2011) Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium. Int Commun Heat Mass Transf 38:1029–1032

    Article  Google Scholar 

  10. Ariel PD (1992) A hybrid method for computing the flow of viscoelastic fluids. Int J Numer Math Fluids 14:757–774

    Article  MATH  Google Scholar 

  11. Nazar R, Amin N, Filip D, Pop I (2004) Stagnation point flow of a micropolar fluid towards a stretching sheet. Int J Non Linear Mech 39:1227–1235

    Article  MATH  Google Scholar 

  12. El Kabeir SMM (2005) Heimenz flow of a micropolar viscoelastic fluid in hydromagnetics. Can J Phys 83:1007–1017

    Article  Google Scholar 

  13. Xu H, Liao SJ, Pop I (2006) Series solution of unsteady boundary layer flows of non-Newtonian fluids near a forward stagnation point. J Non Newtonian Fluid Mech 139:31–43

    Article  MATH  Google Scholar 

  14. Hayat T, Javed T, Abbas Z (2009) MHD flow of a micropolar fluid near a stagnation-point towards a non-linearly stretching surface. Nonlinear Anal Real World Appl 10:1514–1526

    Article  MathSciNet  MATH  Google Scholar 

  15. Abbas Z, Wang Y, Hayat T, Oberlack M (2010) Mixed convection in the stagnation-point flow of a Maxwell fluid towards a vertical stretching surface. Nonlinear Anal Real World Appl 11:3218–3228

    Article  MathSciNet  MATH  Google Scholar 

  16. Sajid M, Abbas Z, Javed T, Ali N (2010) Boundary layer flow of an Oldroyd-B fluid in the region of stagnation point over a stretching sheet. Can J Phys 88:635–640

    Article  Google Scholar 

  17. Abbas Z, Sheikh M, Sajid M (2014) Hydromagnetic stagnation point flow of a micropolar viscoelastic fluid towards a stretching/shrinking sheet in the presence of heat generation. Can J Phys 92:1113–1123

    Article  Google Scholar 

  18. Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410

    Article  Google Scholar 

  19. Kandelousi MS (2014) Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition. Eur Phys J Plus 129:248

    Article  Google Scholar 

  20. Kandelousi MS (2014) KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A 378:3331–3339

    Article  MATH  Google Scholar 

  21. Sheikholeslami M, Ganji DD (2015) Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method. Phys A 417:273–286

    Article  Google Scholar 

  22. Sheikholeslami M (2015) Effect of uniform suction on nanofluid flow and heat transfer over a cylinder. J Braz Soc Mech Sci Eng 37:1623–1633

    Article  Google Scholar 

  23. Sheikholeslami M, Ganji DD, Rashidi MM (2016) Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J Magn Magnet Mater 416:164–173

    Article  Google Scholar 

  24. Sheikholeslami M, Chamkha AJ (2016) Flow and convective heat transfer of a ferro-nanofluid in a double-sided lid-driven cavity with a wavy wall in the presence of a variable magnetic field. Numer Heat Transf Part A 69:1186–1200

    Article  Google Scholar 

  25. Sheikholeslami M, Hayat T, Alsaedi A (2016) MHD free convection of Al2O3–water nanofluid considering thermal radiation: a numerical study. Int J Heat Mass Transf 96:513–524

    Article  Google Scholar 

  26. Abbas Z, Hasnain J (2017) Two-phase magnetoconvection flow of magnetite Fe3O4 nanoparticles in a horizontal composite porous annulus. Results Phys. doi:10.1016/j.rinp.2016.12.022

    Google Scholar 

  27. Abbas Z, Shiekh M (2017) Numerical study of homogeneous-heterogeneous reactions on stagnation point flow of ferrofluid with non-linear slip condition. Chin J Chem Eng 25:11–17

    Article  Google Scholar 

  28. Abbas Z, Perveen R, Shiekh M, Pop I (2016) Thermophoretic diffusion and nonlinear radiative heat transfer due to a contracting cylinder in a nanofluid with generalized slip condition. Results Phys 6:1080–1087

    Article  Google Scholar 

  29. Chambre PL, Young JD (1958) On the diffusion of chemically reactive species in a laminar boundary layer flow. Phys Fluids 1:48–54

    Article  MATH  Google Scholar 

  30. Prasad KV, Abel S, Datti PS (2003) Diffusion of chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet. Int J Non Linear Mech 38:651–657

    Article  MATH  Google Scholar 

  31. Takhar HS, Chamkha AJ, Nath G (2000) Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species. Int J Eng Sci 38:1303–1314

    Article  MATH  Google Scholar 

  32. Muhaimin Kandasamy R, Hashim I (2010) Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction. J Nucl Eng Des 240:933–939

    Article  Google Scholar 

  33. Kameswaran PK, Narayana M, Sibanda P, Murthy PVSN (2012) Hydromagnetic nanofluid flow due to a stretching or shrinking sheet with viscous dissipation and chemical reaction effects. Int J Heat Mass Transf 55:7587–7595

    Article  Google Scholar 

  34. Bhattacharyya K (2011) Dual solutions in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet. Int Commun Heat Mass Transf 38:917–922

    Article  Google Scholar 

  35. Pal D, Chatterjee S (2011) Mixed convection magnetohydrodynamic heat and mass transfer past a stretching surface in a micropolar fluid-saturated porous medium under the influence of Ohmic heating, Soret and Dufour effects. Commun Non linear Sci Numer Simmul 16:1329–1346

    Article  MATH  Google Scholar 

  36. Abbas Z, Sheikh M, Motsa SS (2016) Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy 95:12–20

    Article  Google Scholar 

  37. Abbas Z, Sheikh M, Pop I (2015) Stagnation-point flow of a hydromagnetic viscous fluid over stretching/shrinking sheet with generalized slip condition in the presence of homogeneous-heterogeneous reactions. J Taiwan Inst Chem Eng 55:69–75

    Article  Google Scholar 

  38. Ariel PD, Hayat T, Asghar S (2006) The flow of an elastico-viscous fluid past a stretching sheet with partial slip. Acta Mech 187:29–35

    Article  MATH  Google Scholar 

  39. Hayat T, Javed T, Abbas Z (2008) Slip flow and heat transfer of a second grade fluid past a stretching sheet through a porous space. Int J Heat Mass Transf 51:4528–4534

    Article  MATH  Google Scholar 

  40. Sahoo B (2010) Effects of partial slip on axisymmetric flow of an electrically conducting viscoelastic fluid past a stretching sheet. Cent Eur J Phys 8:498–508

    Google Scholar 

  41. Sahoo B (2010) Effects of slip, viscous dissipation and joule heating on the MHD flow and heat transfer of a second grade fluid past a radially stretching sheet. Appl Math Mech 31:159–173

    Article  MathSciNet  MATH  Google Scholar 

  42. Sajid M, Abbas Z, Ali N, Javed T, Ahmad I (2014) Slip flow of a Maxwell fluid past a stretching sheet. Walailak J Sci Tech 11:1093–1103

    Google Scholar 

  43. Harris J (1977) Rheology and non-Newtonian flow. Longman, London

  44. Grag VK, Rajagopal KR (1991) Flow of non-Newtonian fluid past a wedge. Acta Mech 88:113–123

    Article  MathSciNet  Google Scholar 

  45. Cortell R (2007) MHD flow and mass transfer of an electrically conducting fluid of second grade in a porous medium over a stretching sheet with chemically reactive species. J Chem Eng 46:721–728

    Google Scholar 

  46. Abbas Z, Wang Y, Hayat T, Oberlack M (2008) Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. Int J Non Linear Mech 43:783–793

    Article  MATH  Google Scholar 

  47. Abbas Z, Sheikh M, Sajid M (2013) Mass transfer in two MHD viscoelastic fluids over a stretching sheet in porous medium with chemical reaction species. J Porous Media 16:619–636

    Article  Google Scholar 

  48. Andersson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121–125

    Article  MATH  Google Scholar 

  49. Wang CY (2002) Flow due to a stretching boundary with partial slip: an exact solution of Navier-Stokes equations. Chem Eng Sci 57:3745–3747

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the anonymous reviewers for their useful suggestions to improve the version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Abbas.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Gull, F.T. & Sajid, M. Influence of chemically reacting species in MHD stagnation point flow of an Oldroyd-B fluid with partial slip. J Braz. Soc. Mech. Sci. Eng. 39, 2159–2169 (2017). https://doi.org/10.1007/s40430-017-0726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-017-0726-8

Keywords

Navigation