Skip to main content
Log in

Unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocity

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The unsteady viscous flow and heat transfer in the vicinity of an unaxisymmetric stagnation-point flow of an infinite moving cylinder with time-dependent axial velocity and non-uniform normal transpiration \( U_{0} \left( \varphi \right) \) are investigated. The impinging free stream is steady with a strain rate \( \bar{k} \). A reduction of the Navier–Stokes and energy equations is obtained by use of appropriate similarity transformations. The semi-similar solution of the Navier–Stokes equations and energy equation has been obtained numerically using an implicit finite-difference scheme when the axial velocity of the cylinder and its wall temperature or its wall heat flux varies as specified time-dependent functions. In particular, the cylinder may move with different velocity patterns. These solutions are presented for special cases when the time-dependent axial velocity of the cylinder is a step function, a ramp, and a non-linear function. All the solutions above are presented for Reynolds numbers, \( \text{Re} = \bar{k}a^{2} /2\upsilon \), ranging from 0.1 to 100 for different values of Prandtl number and for selected values of transpiration rate function, \( S(\varphi ) = U_{0} (\varphi )/\bar{k}a \) where a is cylinder radius and υ is kinematic viscosity of the fluid. Dimensionless shear stresses corresponding to all the cases increase with the increase of Reynolds number and transpiration rate function. An interesting result is obtained in which a cylinder moving with certain axial velocity function and at particular value of Reynolds number is axially stress free. The heat transfer coefficient increases with the increasing transpiration rate function, Reynolds number and Prandtl number. Interesting means of cooling and heating processes of cylinder surface are obtained using different rates of transpiration rate function. It is shown that a cylinder with certain type of exponential wall temperature exposed to a temperature difference has not heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\( a \) :

Cylinder radius

\( r \) :

Radial coordinate

\( z \) :

Axial coordinate

\( u,w \) :

Velocity components along (r, z)-axis

\( t \) :

Time

\( T \) :

Temperature

\( T_{\text{W}} \) :

Wall temperature

\( T_{\infty } \) :

Free-stream temperature

\( k \) :

Thermal conductivity

\( \bar{k} \) :

Free-stream strain rate

\( f(\eta ,\;\varphi ,\;\tau ) \) :

Function related to u-component of velocity

\( H(\eta ,\;\varphi ,\;\tau ) \) :

Function related to w-component of velocity

\( V(t) \) :

Axial velocity of cylinder

\( U_{0} (\varphi ) \) :

Transpiration

\( \text{Re} \) :

Reynolds number

\( \Pr \) :

Prandtl number

\( Nu \) :

Nusselt number

\( S(\varphi ) \) :

Transpiration rate function

\( P \) :

Non-dimensional fluid pressure

\( p \) :

Fluid pressure

\( h \) :

Heat transfer coefficient

\( q_{\text{w}} \) :

Heat flux at wall

\( \eta \) :

Similarity variable

\( \varphi \) :

Angular coordinate

\( \alpha \) :

Thermal diffusivity

\( \rho \) :

Fluid density

\( \upsilon \) :

Kinematic viscosity

\( \mu \) :

Dynamic viscosity

\( \theta \left( {\eta ,\varphi ,\tau } \right) \) :

Non-dimensional temperature

\( \sigma \) :

Shear stress

\( \tau \) :

Dimensionless time variable

References

  1. Hiemenz K (1911) Die Grenzschicht an einem in den gleichförmingen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnisches Journal 326:321–410

    Google Scholar 

  2. Homann FZ (1936) Der Einfluss Grosser Zahighkeit bei der Strmung um den Zylinder und um die Kugel. Zeitschrift für angewandte Mathematik und Mechanik 16:153–164. doi:10.1002/zamm.19360160304

    Article  MATH  Google Scholar 

  3. Howarth L (1951) The boundary layer in three-dimensional flow. Part 2. The flow near stagnation point. Philos Mag 42(7):1433–1440

    Article  MathSciNet  MATH  Google Scholar 

  4. Davey A (1961) Boundary-layer flow at a saddle point of attachment. J Fluid Mech 10(4):593–610. doi:10.1017/S0022112061000391

    Article  MathSciNet  MATH  Google Scholar 

  5. Wang CY (1974) Axisymmetric stagnation flow on a cylinder. Q Appl Math 32:207–213

    MATH  Google Scholar 

  6. Wang CY (1973) Axisymmetric stagnation flow towards a moving plate. Am Inst Chem Eng J 19(5):1080–1082. doi:10.1002/aic.690190540

    Article  Google Scholar 

  7. Gorla RSR (1976) Heat transfer in an axisymmetric stagnation flow on a cylinder. Appl Sci Res 32(5):541–553. doi:10.1007/BF00385923

    Article  MathSciNet  Google Scholar 

  8. Gorla RSR (1977) Unsteady laminar axisymmetric stagnation flow over a circular cylinder. Dev Mech 9:286–288

    Google Scholar 

  9. Gorla RSR (1978) Non-similar axisymmetric stagnation flow on a moving cylinder. Int J Eng Sci 16(6):392–400

    Google Scholar 

  10. Gorla RSR (1978) Transient response behavior of an axisymmetric stagnation flow on a circular cylinder due to time-dependent free stream velocity. Lett Appl Eng Sci Int J 16(7):493–502. doi:10.1016/0020-7225(78)90082-4

    Article  MATH  Google Scholar 

  11. Gorla RSR (1979) Unsteady viscous flow in the vicinity of an axisymmetric stagnation-point on a cylinder. Int J Eng Sci 17(1):87–93. doi:10.1016/0020-7225(79)90009-0

    Article  Google Scholar 

  12. Cunning GM, Davis AMJ, Weidman PD (1998) Radial stagnation flow on a rotating cylinder with uniform transpiration. J Eng Math 33(2):113–128. doi:10.1023/A:1004243728777

    Article  MathSciNet  MATH  Google Scholar 

  13. Grosch CE, Salwen H (1982) Oscillating stagnation point flow. Proc R Soc Lond Ser A Math Phys Sci 384(786):175–190

    Article  MathSciNet  MATH  Google Scholar 

  14. Takhar HS, Chamkha AJ, Nath J (1999) Unsteady axisymmetric stagnation-point flow of a viscous fluid on a cylinder. Int J Eng Sci 37(15):1943–1957. doi:10.1016/S0020-7225(99)00009-9

    Article  MATH  Google Scholar 

  15. Saleh R, Rahimi AB (2004) Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocity and uniform transpiration. J Fluid Eng 126(6):997–1005. doi:10.1115/1.1845556

    Article  Google Scholar 

  16. Rahimi AB, Saleh R (2007) Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a rotating cylinder with time-dependent angular velocity and uniform transpiration. J Fluid Eng 129(1):107–115

    Google Scholar 

  17. Rahimi AB, Saleh R (2008) Similarity solution of unaxisymmetric heat transfer in stagnation-point flow on a cylinder with simultaneous axial and rotational movements. J Heat Transf 130(5):054502-1–054502-5

    Google Scholar 

  18. Abbasi AS, Rahimi AB (2009) Non-axisymmetric three-dimensional stagnation-point flow and heat transfer on a flat plate. J Fluid Eng 131(7):074501.1–074501.5

    Google Scholar 

  19. Abbasi AS, Rahimi AB (2009) Three-dimensional stagnation-point flow and heat transfer on a flat plate with transpiration. J Thermophys Heat Transf 23(3):513–521. doi:10.2514/1.41529

    Article  Google Scholar 

  20. Abbasi AS, Rahimi AB, Niazman H (2011) Exact solution of three-dimensional unsteady stagnation flow on a heated plate. J Thermophy Heat Transf 25(1):55–58. doi:10.2514/1.48702

    Article  Google Scholar 

  21. Abbasi AS, Rahimi AB (2012) Investigation of two-dimensional stagnation-point flow and heat transfer impinging on a flat plate. J Heat Transf 134:024501-1

    Google Scholar 

  22. Subhashini SV, Nath G (1999) Unsteady compressible flow in the stagnation region of two-dimensional and axisymmetric bodies. Acta Mechanica 134(3–4):135–145. doi:10.1007/BF01312652

    Article  MATH  Google Scholar 

  23. Kumari M, Nath G (1980) Unsteady compressible 3-dimensional boundary layer flow near an axisymmetric stagnation point with mass transfer. Int J Eng Sci 18(12):1285–1300. doi:10.1016/0020-7225(80)90120-2

    Article  MATH  Google Scholar 

  24. Kumari M, Nath G (1981) Self-similar solution of unsteady compressible three-dimensional stagnation-point boundary layers. J Appl Math Phys 32(3)

  25. Katz A (1972) Transformations of the compressible boundary layer equations. SIAM J Appl Math 22(4)

  26. Afzal N, Ahmad S (1975) Effect of transpiration and injection on self-similar solutions of second-order boundary layer equations. Int J Heat Mass Transf 18(5):607–614. doi:10.1016/0017-9310(75)90272-0

    Article  MATH  Google Scholar 

  27. Libby PA (1967) Heat and mass transfer at a general three-dimensional stagnation point. AIAA J 5(3):507–517. doi:10.2514/3.4008

    Article  MATH  Google Scholar 

  28. Gersten K, Papenfuss HD, Gross JF (1978) Influence of the Prandtl Number on second-order heat transfer due to surface curvature at a three-dimensional stagnation point. Int J Heat Mass Transf 21(3):275–284. doi:10.1016/0017-9310(78)90120-5

    Article  Google Scholar 

  29. Blottner FG (1970) Finite-difference methods of solution of the boundary layer equations. AIAA J 8:193–205

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar B. Rahimi.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, R., Rahimi, A.B. & Najafi, M. Unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocity. J Braz. Soc. Mech. Sci. Eng. 38, 85–98 (2016). https://doi.org/10.1007/s40430-015-0389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0389-2

Keywords

Navigation