Skip to main content
Log in

Stochastic dynamics of a non-linear cable–beam system

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Cable-stayed bridges and guyed towers are examples of structures extensively used in Civil Engineering. The uniform tension in the cable may change during service life due to various causes. Thus, uncertainty studies appear desirable to provide information about the effect of the parameter variations on the structure dynamics. The non-linear dynamic behavior of a cable-beam system, as a simplified model of a guyed structure, is studied. The beam behavior is assumed linear, while the cable is modeled with non-linear equations accounting for the extensibility and an initial deformed state. The deterministic equations are linearized about the reference configuration and then frequencies and modes are calculated. The modes are later used to construct a reduced order model. The non-linear equations are discretized by finite elements with a Galerkin procedure. Afterwards, a stochastic model is stated with the cable tension and beam stiffness assumed as random variables and appropriate probability density functions (PDFs) are derived through the Principle of Maximum Entropy. A numerical analysis is carried out using Monte Carlo techniques for simulations. Some unexpected features, such as multimodality of the PDFs, are observed. The structural model seems to be more sensitive to the cable tension uncertainty than to the beam stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gattulli V, Lepidi M (2003) Nonlinear interactions in the planar dynamics of cable-stayed beam. Int J Solids Struct 40:4729–4748

    Article  MATH  Google Scholar 

  2. Gattulli V, Lepidi M, Macdonald JHG, Taylor CA (2005) One-to-two global-local interaction in a cable-stayed beam observed through an analytical, finite element and experimental models. Int J Non-Linear Mech 40:571–588

    Article  MATH  Google Scholar 

  3. Wei MH, Xiao YQ, Liu HT (2011) Bifurcation and chaos of a cable-beam coupled system under simultaneous internal and external resonances. Nonlinear Dyn 67:1969–1984

    Article  MathSciNet  Google Scholar 

  4. Lenci S, Ruzziconi L (2009) Nonlinear phenomena in the single mode dynamics of a cable supported beam. Int J Bifurc Chaos 19(3):923–945

    Article  MathSciNet  Google Scholar 

  5. ANSI/TIA-222-G (2009) Structural standard for antenna supporting structures and antennas. Telecommunications Industry Association, Arlington

  6. CIRSOC 306 (1992) Estructuras de Acero Para Antenas. INTI, BuenosAires

  7. Shannon C (1948) A mathematical theory of communication. Bell Tech J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  8. Pagnacco E, Sampaio R, Souza de Cursi JE (2011) Frequency response functions of random linear mechanical systems and propagations of uncertainties. Mec Comput 30:3357–3380

    Google Scholar 

  9. Buezas FS, Rosales MB, Sampaio R (2013) Propagation of uncertainties and multimodality in the impact problem of two elastic bodies. Int J Mech Sci 75:145–155

    Article  Google Scholar 

  10. Fung YC (1965) Foundations of solid mechanics. Prentice-Hall Inc, New Jersey

    Google Scholar 

  11. Udwadia FE (1989) Some results on maximum entropy distributions for parameters known to lie in finite intervals. SIAM Rev 31(1):103–109

    Article  MathSciNet  MATH  Google Scholar 

  12. Singh V (2013) Entropy theory and its application in environmental and water engineering. Wiley, Chichester

    Book  Google Scholar 

  13. Kapur JN, Kesavan HK (1992) Entropy optimization principles with applications. Academic Press Inc, New York

    Book  Google Scholar 

  14. Ritto TG, Sampaio R, Cataldo E (2008) Timoshenko beam with uncertainty on the boundary conditions. J Braz Soc Mech Sci Eng 30(4):295–303

    Article  Google Scholar 

  15. Sampaio R, Cataldo E (2010) Comparing two strategies to model uncertainties in structural dynamics. Shock Vib 17(2):171–186

    Article  MathSciNet  Google Scholar 

  16. Dorini FA, Sampaio R (2012) Some results on the random wear coefficient of the Archard model. J Appl Mech 79:051008–051014

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from CONICET, MINCyT, and UNS (Argentina) and CAPES, CNPq, and FAPERJ (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta B. Rosales.

Additional information

Technical Editor: Marcelo A. Trindade.

Appendix

Appendix

The constants of Eq. 5 are listed next. For the sake of brevity, a compact notation is introduced. For instance, if one needs to calculate \(d_{211},\) then, as stated in the fourth line, \(L^2=d,\) and afterwards, in the sixth line, \(L_{jkk}^i\) with \(i=2\), \(j=2\) and \(k=1\) gives \(L_{211}^2=d_{211}\).

$$\begin{aligned} m_i= & {} m_b\int _{0}^{L_b} \phi _{b_vi}'^2 + \phi _{b_ui}'^2 dx_b + m_c\int _{0}^{L_c}\phi _{c_vi}'^2 + \phi _{c_ui}'^2 {\mathrm{d}}x_c \\ a_i= & {} c_b\int _{0}^{L_b} \phi _{b_vi}'^2 + \phi _{b_ui}'^2 dx_b + c_c\int _{0}^{L_c} \phi _{c_vi}'^2 + \phi _{c_ui}'^2 {\mathrm{d}}x_c \\ p_i= & {} \int _{0}^{L_b} P_{b_vi}\phi _{b_vi} + P_{b_ui}\phi _{b_ui} dx_b + \int _{0}^{L_c} P_{c_vi}\phi _{c_vi} + P_{c_ui}\phi _{c_ui} {\mathrm{d}}x_c \\ L^1= & {} c , L^2 = d \\ L_{kkk}^i= & {} \frac{1}{2}EA_c \int _{0}^{L_c} \phi _{c_vk}'^3 \phi _{c_vi}' {\mathrm{d}}(x_c) \\ L_{jkk}^i= & {} \frac{3}{2}EA_c \int _{0}^{L_c} \phi _{c_vk}'^2 \phi _{c_vj}'^2 \phi _{c_vi}' {\mathrm{d}}(x_c) \\ L_{i}^i= & {} \int _{0}^{L_b}\Big \{ EI \phi _{b_vi}''^2 + EA_b\phi _{b_ui}'^2 \Big \}dx_b + \int _{0}^{L_c}\Big \{ H \phi _{c_vi}'^2 + EA_c \phi _{c_ui}'^2 \\&+ \, 2 EA_c Y_c' \phi _{c_ui}' \phi _{c_vi}' + 2 EA_c Y_c'^2 \phi _{c_vi}'^2 \Big \} {\mathrm{d}}x_c \\ L_j^i= & {} \int _{0}^{L_c} EA_c \bigg ( Y_c' \phi _{c_uj}' \phi _{c_vi}' + Y_c'^2 \phi _{c_vj}' \phi _{c_vi}' + \phi _{c_vj}' \phi _{c_ui}' \bigg ) {\mathrm{d}}x_c \\ L^i_{12}= & {} \int _{0}^{L_c}\bigg \{ EA_c\Big ( 3 Y_c' \phi '_{c_v1}\phi '_{c_v2}\phi '_{c_vi} + \phi '_{c_u1}\phi '_{c_v2}\phi '_{c_vi} + \phi '_{c_u2}\phi '_{c_v1}\phi '_{c_vi}\\&+\, Y'_c \phi '_{c_v1}\phi '_{c_v2}\phi '_{c_ui}\Big ) \bigg \} {\mathrm{d}}x_c \\ L_{jj}^i= & {} \int _{0}^{L_c} EA_c \bigg ( \frac{3}{2} Y_c' \phi _{c_vj}'^2 \phi _{c_vi}' + \phi _{c_vj}'\phi _{c_uj}' \phi _{c_vi}' + \frac{1}{2}\phi _{c_vj}'^2 \phi _{c_ui}'\bigg ) {\mathrm{d}}x_c \quad {\text{ with}} \quad i, j, k=1,2. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballaben, J.S., Sampaio, R. & Rosales, M.B. Stochastic dynamics of a non-linear cable–beam system. J Braz. Soc. Mech. Sci. Eng. 38, 307–316 (2016). https://doi.org/10.1007/s40430-015-0387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0387-4

Keywords

Navigation