Skip to main content
Log in

Effects of trailing edge bluntness on airfoil tonal noise at low Reynolds numbers

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to analyze the effects of trailing edge bluntness on airfoil tonal noise generation and propagation at low Reynolds numbers. Several simulations are conducted for a NACA0012 airfoil at four different free-stream Mach numbers, \(M_{\infty }\) = 0.2–0.5. The angle of incidence is set equal to 3°, and the Reynolds number based on the airfoil chord is \(Re_{c}\) = 5,000. The effects of compressibility on sound generation and propagation are analyzed along with the effects of scattering by blunt trailing edges with four different radii of curvature. Sound generation by vortex shedding is computed by a hybrid method and an accurate two-dimensional direct calculation, and results are compared. The hybrid approach uses direct calculation for near-field source computations and the Ffowcs Williams–Hawkings equation as the acoustic analogy formulation. Numerical results show that the airfoil emits an intense “narrow-band” tone and that a thicker trailing edge emits higher noise levels than a thinner one since the magnitude of quadrupole sources is larger for the thicker configuration. Moreover, the spatial distribution of quadrupole sources shows that the peak quadrupole values are closer to the surface when the trailing edge is thicker, which, again, increases the scattered far-field noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(c_{\infty }\) :

Free-stream speed of sound

\(c\) :

Airfoil chord

\(E\) :

Total energy

\(f\) :

FW-H surface

\(F_i\) :

Dipole source

\(G\) :

Green’s function

\(g_{ij}\) :

Covariant metric tensors

\(g^{ij}\) :

Contravariant metric tensors

\(H\) :

Heaviside function

\(H_0^{(2)}\) :

Hankel function of the second kind and order zero

\(i\) :

Imaginary unit

\(M_{\infty }\) :

Free-stream Mach number

\(q_{j}\) :

Heat flux

\(p\) :

Pressure

\(Pr\) :

Prandtl number

\(Q\) :

Monopole source

\(Re_{c}\) :

Reynolds number based on airfoil chord \(c\)

\(t\) :

Time

\(T\) :

Temperature

\(T_{ij}\) :

Quadrupole source (Lighthill stress tensor)

\(u_i\) :

Fluid velocity

\(u^i\) :

Contravariant velocity components

\(U_i\) :

Mean flow velocity

\(\mathbf {x}\) :

Observer position

\(\mathbf {y}\) :

Source position

\(\gamma\) :

Ratio of specific heats

\(\delta _{ij}\) :

Kronecker delta

\(\rho\) :

Density

\(\tau _{ij}\) :

Viscous stress tensor

\(\omega\) :

Angular frequency

\(\kappa\) :

Thermal conductivity

\({\mu }\) :

Dynamic viscosity coefficient

\(\nu\) :

Kinematic viscosity coefficient

\({}^{\prime}\) :

Perturbation value

\(\hat{\cdot }\) :

Fourier-transformed quantity

References

  1. Lockard DP, Lilley G (2004) The airframe noise reduction challenge. Tech Rep, NASA

  2. Dobrzynski W (2010) Almost 40 years of airframe noise research: what did we achieve? J Aircr 47(2):353–367. doi:10.2514/1.44457

    Article  Google Scholar 

  3. Lele SK, Nichols JW (2014) A second golden age of aeroacoustics?. Philos Trans R Soc Math Phys Eng Sci 372(2022). doi:10.1098/rsta.2013.0321

  4. Smith DL, Paxson RP, Talmadge RD, Hotzo ER (1970) Measurements of the radiated noise from sailplanes. Tech Rep, US Air Force Flight Dynamics Laboratory, pp 114

    Google Scholar 

  5. Clark LT (1971) The radiation of sound from an airfoil immersed in a laminar flow. J Eng Gas Turbines Power 93(4):366–376. doi:10.1115/1.3445595

    Article  Google Scholar 

  6. Hersh AS, Hayden RE (1971) Aerodynamics sound radiation from lifting surfaces with and without leading edge serrations. Tech Rep, NASA, pp 102

    Google Scholar 

  7. Longhouse RE (1977) Vortex shedding noise of low tip speed, axial flow fans. J Sound Vib 53(1):25–46. doi:10.1016/0022-460X(77)90092-X

    Article  Google Scholar 

  8. Fink MR, Schlinker RH, Amiet RK (1976) Prediction of rotating-blade vortex noise from noise of non-rotating blades. Tech Rep, NASA, pp 119

    Google Scholar 

  9. Arbey H, Bataille J (1983) Noise generated by airfoil profiles placed in a uniform laminar flow. J Fluid Mech 134:33–47. doi:10.1017/S0022112083003201

    Article  Google Scholar 

  10. Paterson RW, Vogt PG, Fink MR, Munch CL (1973) Vortex noise of isolated airfoils. J Aircr 10:296–302. doi:10.2514/3.60229

    Article  Google Scholar 

  11. Tam CKW (1974) Discrete tones of isolated airfoils. J Acoust Soc Am 55(6):1173–1177. doi:10.1121/1.1914682

    Article  Google Scholar 

  12. Fink MR (1975) Prediction of airfoil tone frequencies. J Aircr 12(2):118–120. doi:10.2514/3.44421

    Article  Google Scholar 

  13. Brooks TF, Pope DS, Marcolini MA (1989) Airfoil self-noise and prediction. Tech Rep, NASA, pp 145

    Google Scholar 

  14. Nash EC, Lowson MV, Mcalpine A (1999) Boundary-layer instability noise on aerofoils. J Fluid Mech 382:27–61. doi:10.1017/S002211209800367X

    Article  MATH  Google Scholar 

  15. Desquesnes G, Terracol M, Sagaut P (2007) Numerical investigation of the tone noise mechanism over laminar airfoils. J Fluid Mech 591:155–182. doi:10.1017/S0022112007007896

    Article  MATH  Google Scholar 

  16. Kurotaki T, Sumi T, Atobe T, Hiyamae J (2008) Numerical simulation around NACA0015 with tonal noise generation. In: Proceedings of the 46th AIAA aerospace sciences meeting and exhibit, Reno. Paper No. 2008–672. doi:10.2514/6.2008-672

  17. Chong TP, Joseph P (2009) An experimental study of tonal noise mechanism of laminar airfoils. In: 15th AIAA/CEAS aeroacoustics conference (30th AIAA aeroacoustics conference). doi:10.2514/6.2009-3345

  18. Tam C, Ju H (2011) Airfoil tones at moderate reynolds number: a computational study. In: Proceedings of the 17th AIAA/CEAS aeroacoustics Conference (32nd AIAA aeroacoustics conference), Portland. Paper No. 2011-2711. doi:10.2514/6.2011-2711

  19. Hutcheson F, Brooks T (2004) Effects of angle of attack and velocity on trailing edge noise. In: 42nd AIAA aerospace sciences meeting and exhibit, aerospace sciences meetings. doi:10.2514/6.2004-1031

  20. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103(1):16–42. doi:10.1016/0021-9991(92)90324-R

    Article  MathSciNet  MATH  Google Scholar 

  21. Nagarajan S, Lele SK, Ferziger JH (2003) A robust high-order compact method for large eddy simulation. J Comput Phys 191(2):392–419. doi:10.1016/S0021-9991(03)00322-X

    Article  MathSciNet  MATH  Google Scholar 

  22. Beam RM, Warming RF (1978) An implicit factored scheme for the compressible navier-stokes equations. AIAA J 16(4):393–402. doi:10.2514/3.60901

    Article  MATH  Google Scholar 

  23. Nagarajan S, Lele S (2005) Sound generation by unsteady airfoil motions: a study using direct computation and acoustic analogy. In: 11th AIAA/CEAS aeroacoustics conference (30th AIAA aeroacoustics conference). doi:10.2514/6.2005-2915

  24. Nagarajan S, Lele SK, Ferziger JH (2007) Leading-edge effects in bypass transition. J Fluid Mech 572:471–504. doi:10.1017/S0022112006001893

    Article  MATH  Google Scholar 

  25. Wolf WR, Lele SK (2010) Acoustic analogy formulations accelerated by fast multipole method for two-dimensional. AIAA J 48:2274–2285. doi:10.2514/1.J050338

    Article  Google Scholar 

  26. Wolf WR, Azevedo JLF, Lele SK (2012) Convective effects and the role of quadrupole sources for aerofoil aeroacoustics. J Fluid Mech 708:502–538. doi:10.1017/jfm.2012.327

    Article  MathSciNet  MATH  Google Scholar 

  27. de Lacerda LA, Wrobel LC, Mansur WJ (1996) A boundary integral formulation for two-dimensional acoustic radiation in a subsonic uniform flow. J Acoust Soc Am 100(1):98–107. doi:10.1121/1.415871

    Article  MATH  Google Scholar 

  28. Lockard D (2000) An efficient, two-dimensional implementation of the Ffowcs william and hawkings equation. J Sound Vib 229(4):897–911. doi:10.1006/jsvi.1999.2522

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, under Grant Nos. 2014/10166-6, 2013/03413-4 and 2013/07375-0, the financial support received from Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, under Grant No. 470695/2013-7 and the financial support received from Pró-Reitoria de Pós-Graduação da Universidade Estadual de Campinas, PRP-UNICAMP, under FAEPEX Grant No. 259/2014. The authors also thank to Centro Nacional de Processamento de Alto Desempenho em São Paulo, CENAPAD-SP, for providing the computer resources for the numerical simulations under project 551. The authors also acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, and FAPESP for providing a MSc. scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Arias Ramírez.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias Ramírez, W., Wolf, W.R. Effects of trailing edge bluntness on airfoil tonal noise at low Reynolds numbers. J Braz. Soc. Mech. Sci. Eng. 38, 2369–2380 (2016). https://doi.org/10.1007/s40430-015-0308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0308-6

Keywords

Navigation