Skip to main content
Log in

Homotopy simulation of micro-scale flow between rotating disks

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The main goal of the present article is to employ the powerful analytical homotopy analysis method (HAM), in contrast to the full numerically or perturbative/asymptotically evaluated ones in the literature, to study the problem of the steady laminar flow and heat transfer generated by two infinite parallel disks separated by a gas-filled micro-gap δ in the presence of velocity slip and temperature jump conditions. Unlike the perturbation techniques, HAM is independent of any small/large physical parameters at all. Furthermore, the HAM provides us a convenient way to guarantee the convergence of solution series, different from all of other analytic techniques, so that it is valid even if nonlinearity becomes rather strong. The current HAM solution demonstrates very good correlation with those of the previously published studies. One disk rotates with angular velocity Ω and the second one with angular velocity . In addition, the lower disk is insulated and the upper disk is maintained at uniform temperature T 0. The boundary-layer governing partial differential equations (PDEs) are transformed into highly nonlinear coupled ordinary differential equations (ODEs) consisting of the momentum and energy equations by using similarity solution. A solution based on similarity transformation is obtained and employed to investigate the effects of the governing parameters on the all velocity contours, temperature distribution, disks’ torque and power, and Nusselt number. HAM is found to demonstrate excellent potential for simulating micro-scale flow problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shevchuk IV (2009) Convective heat and mass transfer in rotating disk systems. Springer, Berlin, Heidelberg, Germany

    Book  MATH  Google Scholar 

  2. Stewartson K (1953) On the flow between two rotating coaxial disks. Math Proc Camb Philos Soc 49:333–341

    Article  MathSciNet  MATH  Google Scholar 

  3. Singh M, Rajvanshi SC (1983) Heat transfer between two parallel rotating porous disks with different permeability. Def Sci J 33:299–307

    Article  Google Scholar 

  4. Yuan ZX, Saniei N, Yan XT (2003) Turbulent heat transfer on the stationary disk in a rotor–stator system. Int J Heat Mass Transf 46:2207–2218

    Article  Google Scholar 

  5. Jiji LM, Ganatos P (2010) Microscale flow and heat transfer between rotating disks. Int J Heat Fluid Flow 31:702–710

    Article  Google Scholar 

  6. Kármán TV (1921) Über laminare und turbulente Reibung. ZAMM: J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 1:233–252

    Article  MATH  Google Scholar 

  7. Shevchuk IV, Buschmann MH (2005) Rotating disk heat transfer in a fluid swirling as a forced vortex. Heat Mass Transf 41:1112–1121

    Article  Google Scholar 

  8. Wang CY (2002) Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations. Chem Eng Sci 57:3745–3747

    Article  Google Scholar 

  9. Gad-el-Hak M (1999) The fluid mechanics of microdevices-the freeman scholar lecture. J Fluids Eng 121:5–33

    Article  Google Scholar 

  10. Yoshimura A (1988) Wall slip corrections for couette and parallel disk viscometers. J Rheol 32:53–67

    Article  Google Scholar 

  11. Sparrow EM, Haji-Sheikh A (1964) Velocity profile and other local quantities in free-molecule tube flow. Phys Fluids 7:1256–1261

    Article  MATH  Google Scholar 

  12. Sparrow E, Beavers G, Hung L (1971) Flow about a porous-surfaced rotating disk. Int J Heat Mass Transf 14:993–996

    Article  Google Scholar 

  13. Turkyilmazoglu M, Senel P (2013) Heat and mass transfer of the flow due to a rotating rough and porous disk. Int J Therm Sci 63:146–158

    Article  Google Scholar 

  14. Arikoglu A, Ozkol I, Komurgoz G (2008) Effect of slip on entropy generation in a single rotating disk in MHD flow. Appl Energy 85:1225–1236

    Article  Google Scholar 

  15. Sahoo B (2009) Effects of partial slip, viscous dissipation and joule heating on von kármán flow and heat transfer of an electrically conducting non-newtonian fluid. Commun Nonlinear Sci Numer Simul 14:2982–2998

    Article  Google Scholar 

  16. Liao SJ (2004) Beyond perturbation: introduction to the homotopy analysis method. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  17. Liao SJ (2004) On the homotopy analysis method for nonlinear problems. Appl Math Comput 147:499–513

    MathSciNet  MATH  Google Scholar 

  18. Mustafa M, Hayat T, Pop I, Asghar S, Obaidat S (2011) Stagnation-point flow of a nanofluid towards a stretching sheet. Int J Heat Mass Transf 54:5588–5594

    Article  MATH  Google Scholar 

  19. Rashidi MM, Hayat T, Erfani E, Mohimanian Pour SA, Hendi AA (2011) Simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk. Commun Nonlinear Sci Numer Simulat 16:4303–4317

    Article  MathSciNet  MATH  Google Scholar 

  20. Abbas Z, Wang Y, Hayat T, Oberlack M (2010) Mixed convection in the stagnation-point flow of a Maxwell fluid towards a vertical stretching surface. Nonlinear Anal: Real World Appl 11:3218–3228

    Article  MathSciNet  MATH  Google Scholar 

  21. Sajid M, Hayat T (2008) Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet. Int Commun Heat Mass Transf 35:347–356

    Article  Google Scholar 

  22. Rashidi MM, Ali M, Freidoonimehr N, Nazari F (2013) Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm. Energy 55:497–510

    Article  Google Scholar 

  23. Dinarvand S, Doosthoseini A, Doosthoseini E, Rashidi MM (2010) Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces. Nonlinear Anal: Real World Appl 11:1159–1169

    Article  MathSciNet  MATH  Google Scholar 

  24. Abbasbandy S, Magyari E, Shivanian E (2009) The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Commun Nonlinear Sci Numer Simul 14:3530–3536

    Article  MathSciNet  MATH  Google Scholar 

  25. Rashidi MM, Shahmohamadi H, Dinarvand S (2008) Analytic approximate solutions for unsteady two-dimensional and axisymmetric squeezing flows between parallel plates. Math Problems Eng

  26. Rashidi MM, Freidoonimehr N, Hosseini A, Bég OA, Hung TK (2013) Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49:469–482

    Article  MATH  Google Scholar 

  27. Riley D, Drake D (1979) Heat transfer from a non-isothermal disk rotating in a quiescent compressible gas. Zeitschrift für angewandte Mathematik und Physik ZAMP 30:757–771

    Article  MATH  Google Scholar 

  28. Gad-el-Hak M (2005) Flow physics. In: Gad-el-Hak M (ed) The MEMS Handbook. CRC Press, Boca Raton

    Google Scholar 

  29. Zohar Y (2002) Heat convection in micro ducts. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  30. Karniadakis G, Beskok A, Aluru N (2006) Microflows and nanoflows: fundamentals and simulation. Springer, Germany

    MATH  Google Scholar 

  31. Rashidi MM, Abelman S, Freidoonimehr N (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525

    Article  Google Scholar 

  32. Rashidi MM, Rostami B, Freidoonimehr N, Abbasbandy S (2014) Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects. Ain Shams Eng J 5:901–912

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asghar B. Rahimi.

Additional information

Communicated by Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freidoonimehr, N., Rahimi, A.B. Homotopy simulation of micro-scale flow between rotating disks. J Braz. Soc. Mech. Sci. Eng. 38, 2333–2344 (2016). https://doi.org/10.1007/s40430-014-0286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0286-0

Keywords

Navigation