Skip to main content
Log in

Application of Galerkin and Collocation method to the electrohydrodynamic flow analysis in a circular cylindrical conduit

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

An analysis has been performed to study the problem of Electrohydrodynamic flow of a fluid in an ion-drag configuration in a circular cylindrical conduit. The governing equations for this problem are reduced to a nonlinear second-order differential equation. The Galerkin Method, Collocation Method and fourth-order Runge–Kutta numerical method are used to solve this problem. Also, Velocity fields have been computed and shown graphically for various values of physical parameters. The objective of the present work is to investigate the effect of the strength of nonlinearity (α) and the Hartman electric number (Ha) on the velocity field. As an important outcome, Increasing Reynolds numbers leads to reduce velocity and excluded backflow in convergent channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mckee S, Watson R, Cuminato JA, Chen MS (1997) Calculation of electrohydrodynamic flow in a circular cylindrical conduit. J Appl Math Mech 77(6):457–465

    MathSciNet  MATH  Google Scholar 

  2. Paullet JE (1999) On the solutions of electrohydrodynamic flow in a circular cylindrical conduit. J Appl Math Mech 79(5):357–360

    MathSciNet  MATH  Google Scholar 

  3. Mastroberardino A (2011) Homotopy analysis method applied to electro-hydrodynamic flow. Commun Nonlinear Sci Numer Simul 16(7):2730–2736

    Article  MathSciNet  MATH  Google Scholar 

  4. Mosayebdorcheh S (2013) Taylor series solution of the electrohydrodynamic flow equation. J Mech Eng Technol 1(2):40–45

    Article  Google Scholar 

  5. Hasankhani Gavabari R, Janbaz A, Ganji DD (2014) Approximate explicit solution of Orr-Sommerfeld equations and heat transfer in a geometry with variable cross section by He’s methods and comparison with the ADM and DTM, Afr Matematika

  6. Joneidi AA, Ganji DD, Babaelahi M (2009) Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int Comm Heat Mass Transf 36:757–762

    Article  Google Scholar 

  7. Bor-Lih Kuo, Cheng-Ying Lo (2009) Application of the differential transformation method to the solution of a damped system with high nonlinearity. Nonlinear Anal 70:1732–1737

    Article  MathSciNet  MATH  Google Scholar 

  8. Abdel-Halim Hassan IH (2002) On solving some eigenvalue-problems by using a differential transformation. Appl Math Comput 127:1–22

    MathSciNet  MATH  Google Scholar 

  9. Pandey RK, Baranwal VK, Singh CS, Singh OP (2012) Semi-analytic algorithms for the electrohydrodynamic flow equation. J Theor Appl Phys 6:45

    Article  Google Scholar 

  10. Marinca V, Herisanu N, Nemes I (2008) Optimal homotopy asymptotic method with application to thin film flow. Central Eur J Phys 6(3):648–653

    Google Scholar 

  11. Marinca V, Herisanu N (2008) An optimal homotopy asymptotic method for solving nonlinear equation arising in heat transfer. Int Comm Heat Mass Transf 35:710–715

    Article  Google Scholar 

  12. Liao S (2010) An optimal homotopy-analysis approach for strongly nonlinear differential equation. Comm Nonlinear Sci Numer Simulat 15:2003–2016

    Article  MATH  Google Scholar 

  13. Ghasemi SE, Hatami M, Mehdizadeh Ahangar GHR, Ganji DD (2014) Electrohydrodynamic flow analysis in a circular cylindrical conduit using least square method. J Electrostatic 72:47–52

    Article  Google Scholar 

  14. Ozisk MN (1993) Heat conduction, 2nd edn. Wiley, USA

    Google Scholar 

  15. Shaoqin G, Huoyuan D (2008) Negative form least-squares methods for the incompressible magneto-hydrodynamic equations. Acta Math Sci 28(3):675–684

    Article  MathSciNet  MATH  Google Scholar 

  16. Hatami M, Ganji DD (2014) Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method. Energy Convers Manage 78:347–358

    Article  Google Scholar 

  17. Stern RH, Rasmussen H (1996) Left ventricular ejection: model solution by collocation an approximate analytical method. Comput Biol Med 26:255–261

    Article  Google Scholar 

  18. Hendi FA, Albugami AM (2010) Numerical solution for Fredholm-Volterra integral equation of the second kind by using collocation and Galerkin methods. J King Saud Univ 22:37–40

    Article  Google Scholar 

  19. Sheikholeslami M, Hatami M, Ganji DD (2013) Analytical investigation of MHD nanofluid in a semi-porous channel. Powder Technol 246:327–336

    Article  Google Scholar 

  20. Hatami M, Hatami J, Ganji DD (2014) Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput Methods Progr Biomed 113:632–641

    Article  Google Scholar 

  21. Hu HY, Li ZC (2006) Collocation methods for Poisson’s equation. Comput Method Appl Mech Eng 195:4139–4160

    Article  MATH  Google Scholar 

  22. Hatami M, Hasanpour A, Ganji DD (2013) Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation. Energy Convers Manage 74:9–16

    Article  Google Scholar 

  23. Herrera I, Diazviera M, Yates R (2004) Single collocation point methods for the advection-diffusion equation. Adv Water Resour 27:311–322

    Article  Google Scholar 

  24. Hatami M, Sheikholeslami M, Ganji DD (2014) Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall. J Mol Liq 195:230–239

    Article  Google Scholar 

  25. Vaferi B, Salimi V, Dehghan Bararnia D, Jahanmiri A, Khedri S (2012) Prediction of transient pressure response in the problem reservoirs using orthogonal collocation. J Petrol Sci Eng doi:10.1016/j.petrol.2012.04.023

  26. Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Additional information

Technical Editor: Francisco Ricardo Cunha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasankhani Gavabari, R., Abbasi, M., Ganji, D.D. et al. Application of Galerkin and Collocation method to the electrohydrodynamic flow analysis in a circular cylindrical conduit. J Braz. Soc. Mech. Sci. Eng. 38, 2327–2332 (2016). https://doi.org/10.1007/s40430-014-0283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-014-0283-3

Keywords

Navigation