Skip to main content
Log in

Inverse determination of blood perfusion coefficient by using different deterministic and heuristic techniques

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This work aims to establish an estimation of the blood perfusion coefficient in cancerous tissues, using inverse problem techniques. The blood perfusion coefficient is modeled as a constant parameter or as a function of the position. Several optimization methods are studied for the constant parameter model. The function estimation approach is performed by the conjugate gradient method with adjoint problem to evaluate the model with spatial variation of the blood perfusion coefficient. The heat transfer problem is represented by the Pennes’ equation. It is a standard heat diffusion equation with a sink term and a source term. The sink term accounts for the blood flow within the biological tissue and the source term accounts for the combined effect of the internal metabolic heat generation together with an external heat flux associated to the cancer treatment. The results are obtained for different functions of blood perfusion coefficients, simulating measurements with and without errors. The performances of the studied inverse problem techniques are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Bi:

Biot number, dimensionless

c :

Specific heat at constant pressure (J/kg−1 K−1)

G :

Dimensionless heat generation

g :

Volumetric heat generation source (W m−3)

g 0 :

Reference source of heating generation (W m−3)

H :

Aspect ratio, dimensionless

h :

Convection coefficient (W m−2 K−1)

k t :

Thermal conductivity (W m−1 K−1)

L :

Tissue length (m)

l :

Tissue thickness (m)

M :

Eigenfunction’s norm, dimensionless

M s :

Number of sensors, dimensionless

N :

Eigenfunction’s norm, dimensionless

NL:

Noise level, dimensionless

P f :

Dimensionless perfusion coefficient

S :

Objective function, dimensionless

T :

Tissue temperature (°C)

T 0 :

Initial temperature of the tissue (°C)

T a :

Arterial temperature (°C)

T p :

Skin surface temperature (°C)

T :

Medium temperature (°C)

t :

Time (s)

X :

Dimensionless horizontal coordinate

x :

Horizontal coordinate (m)

Y :

Dimensionless vertical coordinate

y :

Vertical coordinate (m)

σ :

Standard deviation, dimensionless

α t :

Thermal diffusivity (m2 s−1)

α c :

Search step, dimensionless

β :

Eigenvalue, dimensionless

δ :

Dirac delta, dimensionless

Δ:

Variation of a quantity, dimensionless

µ :

Eigenvalue, dimensionless

\( \gamma \) :

Eigenvalue, dimensionless

\( \gamma_{\text{c}} \) :

Dimensionless conjugation coefficient

\( \theta \) :

Dimensionless temperature

\( \overline{\overline{{{\uptheta}}}} \) :

Dimensionless transformed temperature

\( \theta_{0} \) :

Initial temperature, dimensionless

\( \rho \) :

Density (kg m−3)

ξ :

Measured temperature, dimensionless

\( \psi \) :

Eigenfunction, dimensionless

\( \lambda \) :

Eigenfunction, dimensionless

\( \lambda_{c} \) :

Lagrange multiplier, dimensionless

τ :

Dimensionless time

τ f :

Dimensionless final time

i :

Natural positive number

j :

Natural positive number

References

  1. Angeline P (1998) Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: The seventh annual conference on evolutionary programming

  2. Azevedo MDB, Guedes RO, Neto FS (2006) Analytical solution to the two dimensional transient bioheat equation with convective boundary conditions. In: 11° Brazilian congress of thermal sciences and engineering, ENCIT

  3. Brien KT, O’Mekkaoui AM (1993) Numerical simulation of the thermal fields occurring in the treatment of malignant tumors by local hyperthermia. J Biomech Eng 115:247–253

    Google Scholar 

  4. Brix G, Seebass M, Hellwig G, Griebel J (2002) Estimation of heat transfer and temperature rise in partialbody regions during MR procedures: an analytical approach with respect to safety considerations. Magn Reson Imaging 20:65–76

    Google Scholar 

  5. Cardoso ICRA (2003) Assessments of megavoltage radiotherapy and brachytherapy by implantation of Iodine-125 seeds and/or associations, through the monitoring of predictive parameters of prostate specific antigen (PSA) in patients with prostate cancer (in Portuguese). MSc Thesis, Federal University of Minas Gerais, Brazil

  6. Chan CL (1991) Boundary element method analysis for the bioheat transfer equation. J Biomech Eng 114:358–365

    Google Scholar 

  7. Colaço MJ, Orlande HRB, Dulikravich GS (2006) Inverse and optimization problems in heat transfer. J Braz Soc Mech Sci Eng 28:1–24

    Google Scholar 

  8. Giering K, Lamprecht I, Minet O, Handke A (1995) Determination of specific heat capacity of healthy and tumorous human tissue. Thermochem Acta 251:199–205

    Article  Google Scholar 

  9. Huang BS, Huang X, Harmsen E, Leenen FHH (1994) Chronic central versus peripheral ouabain, blood pressure, and sympathetic activity in rats. Hypertens 23:1087–1090

    Google Scholar 

  10. IMSL (1997) IMSL Library reference manual, 7th edn. NBC Bldg., 7500 Ballaire Blvd., Houston

  11. Jiang SC, Ma N, Li HJ, Zhang XX (2002) Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns 28:713–717

    Google Scholar 

  12. Keller KH, Seiler LJ (1971) An analysis of peripheral heat transfer in man. J Appl Physiol 30:779–786

    Google Scholar 

  13. Kleinman AM, Roermer RB (1983) A direct substitution, equation error technique for solving the thermographic tomography problem. J Biomech Eng 105:237–243

    Google Scholar 

  14. Lima RCF, Lyra PRM, Guimarães CSC (2006) Computational Modeling of the Bioheat Transfer in Hyperthermia Treatment for Duodenum Tumors by Using the Finite Volume Methods in Non-Structured Grids (in Portuguese). Revista Brasileira de Engenharia Biomédica 22:119–129

    Google Scholar 

  15. Malalasekera W, Versteeg HK (1995) An introduction to computational fluid dynamics: the finite volume method. Harlow Pearson Education, New York

    Google Scholar 

  16. Mikhailov MD, Ozisik MN (1984) Unified analysis and solutions of heat and mass diffusion. Dover Publications, New York, p 458

    Google Scholar 

  17. Özisik MN (1993) Heat conduction, 2nd edn. John Wiley & Sons, New York

  18. Özisik MN, Orlande HRB (2000) Inverse heat transfer: fundamentals and applications. Taylor & Francis, New York

    Google Scholar 

  19. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85:93–122

    Google Scholar 

  20. Rawnsley RJ, Roemer RB, Dutton AW (1994) The simulation of discrete vessel in experimental hyperthermia. J Biomech Eng 116:256–262

    Google Scholar 

  21. Ren ZP, Liu J, Wang CC (1995) Boundary element method (BEM) for solving normal and inverse bio-heat transfer problem of biological bodies with Complex shape. J Thermal Sci 4:177–184

    Google Scholar 

  22. Rivolta B, Inzoli F, Mantero S, Severine S (1999) Evaluation of temperature distribution during hyperthermic treatment in biliary tumors: a computational approach. J Biomech Eng 122:141–147

    Google Scholar 

  23. Trucu D, Ingham DB, Lesnic D (2007) The inverse coefficient identification problem in bio-heat-transient flow equation. In: design and optimization symposium, vol 45. Miami, Florida, USA, pp 16–18

  24. Trucu D Ingham DB, Lesnic D (2010) Space-dependent perfusion coefficient identification in the transient bio-heat equation. J Eng Math 67:307–315

    Google Scholar 

  25. Trucu D, Ingham DB, Lesnic D (2010) Inverse temperature-dependent perfusion coefficient reconstruction. Int J Non-Linear Mech 45:542–549

    Google Scholar 

Download references

Acknowledgments

This work was partially funded with resources from FAPERJ, CNPq and CAPES, which are Brazilian agencies for scientific and technological development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Colaço.

Additional information

Technical Editor: Horácio Vielmo.

Appendix

Appendix

In this section, it is reported the use of the integral transform technique in the solution of the proposed problem.

$$ \frac{{\partial^{2} \theta }}{{\partial X^{2} }} + \frac{{\partial^{2} \theta }}{{\partial Y^{2} }} - P_{\text{f}} \theta + G = \frac{\partial \theta }{\partial \tau },\quad 0 < Y < {\text{H}},\;0 < X < 1,\;\tau > 0 $$
(48)
$$ \frac{\partial \theta }{\partial X} = 0,\quad X = 0,\;\tau > 0 $$
(49)
$$ \frac{\partial \theta }{\partial X} = 0,\quad X = 1,\;\tau > 0 $$
(50)
$$ - \frac{\partial \theta }{\partial Y} + {\text{Bi}}\theta = {\text{Bi}}\theta_{\infty },\quad Y = 0,\;\tau > 0 $$
(51)
$$ \theta = 0,\quad Y = H,\;\tau > 0 $$
(52)
$$ \theta = \theta_{0},\quad 0 < Y < 1/L,\;0 < X < 1,\;\tau = 0 $$
(53)

where H = 1/L.

The integral transform pair for the function \( \theta \left( {X ,Y,\tau } \right) \) with respect to the X variable is readily obtained by splitting up the representation into two parts as

Integral transform:

$$ \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right) = \int\limits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} \theta \left( {X,Y,\tau } \right){\text{d}}X $$
(54)

Inversion formula:

$$ \theta \left( {X,Y,\tau } \right) = \sum\limits_{i = 0}^{\infty } {\frac{{\Uppsi \left( {\mu_{i} ,X} \right)}}{{N\left( {\mu_{i} } \right)}}\overline{\theta } \left( {\mu_{i} ,Y,\tau } \right)} $$
(55)

The eigenvalue problem associated is given by the equations above,

$$ \frac{{{\text{d}}^{2} \Uppsi }}{{{\text{d}}X^{2} }} + \mu_{i}^{2} \Uppsi = 0,\quad 0 < X < 1 $$
(56)
$$ \frac{{{\text{d}}\Uppsi }}{{{\text{d}}X}} = 0,\quad X = 0 $$
(57)
$$ \frac{{{\text{d}}\Uppsi }}{{{\text{d}}X}} = 0,\quad X = 1 $$
(58)

The functions \( \Uppsi \left( {\mu_{i} ,X} \right) \), \( N\left( {\mu_{i} } \right) \) and the eigenvalues \( \mu_{\text{i}} \) from table 2-2 case 5 Özisik [17].

The associated eigenfunction is

$$ \Uppsi \left( {\mu_{i} ,X} \right) = \cos \left( {\mu_{i} X} \right),\quad i = 0,1,2, \ldots $$
(59)

and the norm is

$$ \frac{1}{{N\left( {\mu_{i} } \right)}} = \left\{ {\begin{array}{*{20}c} 2,& \quad {\mu_{i} \ne 0} \\ 1, & \quad {\mu_{i} = 0} \\ \end{array} } \right. $$
(60)

The eigenvalues are the positive roots of the following equation

$$ {\text{sen}}\left( {\mu_{i} X} \right) = 0,i = 0,1,2, \ldots $$
(61)
$$ \therefore \mu_{i} = i\pi ,i = 0,1,2, \ldots $$
(62)

Applying \( \int\nolimits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} \left( \cdot \right){\text{d}}X \) into Eq. (48).

$$ \begin{gathered} \int\limits_{0}^{1} {\Uppsi \left( {\mu_{\text{i}} ,X} \right)} \frac{{\partial^{2} \theta }}{{\partial X^{{^{2} }} }}{\text{d}}X + \int\limits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} \frac{{\partial^{2} \theta }}{{\partial {\text{Y}}^{{^{2} }} }}{\text{d}}X - \int\limits_{0}^{1} {\Uppsi \left( {\mu_{\text{i}} ,{\text{X}}} \right)} P_{\text{f}} \theta {\text{d}}X + \underbrace {{\int\limits_{0}^{1} {\Uppsi \left( {\mu_{\text{i}} ,X} \right)} {\text{Gd}}X}}_{{\overline{\text{G}}_{i} }} \hfill \\ = \int\limits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} \frac{\partial \theta }{\partial \tau }{\text{d}}X \hfill \\ \end{gathered} $$
(63)
$$ \underbrace {{\int\limits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} \frac{{\partial^{2} \theta }}{{\partial X^{2} }}{\text{d}}X}}_{{({\text{I}})}} + \frac{{\partial^{2} \overline{\theta } }}{{\partial Y^{{^{2} }} }} - P_{\text{f}} \overline{\theta } + \overline{G}_{i} = \frac{{\partial \overline{\theta } }}{\partial \tau } $$
(64)

Solving the integral (I) and using the Eqs. (49), (50) and Eqs. (57), (58).

$$ ({\text{I}}) = - \mu_{i}^{2} \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right) $$
(65)

Replacing the Eq. (65) into Eq. (64) it is obtained the following partial differential equation for the transform \( \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right), \)

$$ - \mu_{i}^{2} \overline{\theta } + \frac{{\partial^{2} \overline{\theta } }}{{\partial Y^{{^{2} }} }} - P_{\text{f}} \overline{\theta } + \overline{G}_{i} = \frac{{\partial \overline{\theta } }}{\partial \tau } $$
(66)

Transforming the Eqs. (51)–(53) in “X”:

$$ - \frac{{\partial \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right)}}{\partial Y} + {\text{Bi}}\overline{\theta } \left( {\mu_{i} ,Y,\tau } \right) = {\text{Bi}}\int\limits_{0}^{1} {\Uppsi \left( {\mu_{\text{i}} ,{\text{X}}} \right)} \theta_{\infty } {\text{d}}X\quad Y = 0,\;\tau > 0 $$
(67)
$$ \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right) = 0,\quad Y = H,\;\tau > 0 $$
(68)
$$ \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right) = \int\limits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} \, \theta_{0} {\text{d}}X,\quad 0 < Y < H,\;0 < X < 1,\;\tau = 0 $$
(69)

The integral transform pair for the function \( \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right) \) with respect to the Y variable is readily obtained by splitting up the representation into two parts as

Integral transform:

$$ \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) = \int\limits_{0}^{H} {\lambda \left( {\gamma_{j} ,Y} \right)} \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right){\text{d}}Y $$
(70)

Inversion formula:

$$ \overline{\theta } \left( {\mu_{i} ,Y,\tau } \right) = \sum\limits_{j = 1}^{\infty } {\frac{{\lambda \left( {\gamma_{j} ,Y} \right)}}{{{\text{M}}\left( {\gamma_{j} } \right)}}\overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right)} $$
(71)

The eigenvalue problem associated is given by the equations above,

$$ \frac{{{\text{d}}^{2} \lambda }}{{{\text{d}}Y^{2} }} + \left( {\gamma_{j}^{2} - P_{\text{f}} } \right) \, \lambda = 0,\,0 < Y < H $$
(72)
$$ - \frac{{{\text{d}}\lambda }}{{{\text{d}}Y}} + {\text{Bi}}\lambda = 0,Y = 0 $$
(73)
$$ \lambda = 0,Y = H $$
(74)

where,

$$ \gamma_{j}^{2} - P_{\text{f}} = \beta_{j}^{2} $$
(75)

The functions \( \lambda \left( {\gamma_{j} ,Y} \right) \), \( M\left( {\gamma_{j} } \right) \) and the eigenvalues \( \gamma_{\text{j}} \) from table 2-2 case 3 Özisik [17]. The associated eigenfunction is

$$ \lambda \left( {\gamma_{j} ,Y} \right) = {\text{sen}}\left( {\gamma_{j} Y} \right),\quad j = 0,1,2, \ldots $$
(76)

and the norm is

$$ \frac{1}{{M\left( {\gamma_{j} } \right)}} = \frac{{H\left( {\beta_{j}^{2} + {\text{Bi}}^{2} } \right) + {\text{Bi}}}}{{2\left( {\beta_{\text{j}}^{2} + {\text{Bi}}^{2} } \right)}} $$
(77)

The eigenvalues are the positive roots of the following equation

$$ \beta_{j} \cot \left( {\beta_{j} H} \right) = - {\text{Bi}},\quad i = 0,1,2, \ldots $$
(78)

Applying \( \int\nolimits_{0}^{H} {\lambda \left( {\gamma_{j} ,Y} \right)} \left( \cdot \right){\text{d}}Y \) into Eq. (66)

$$ - \mu_{i}^{2} \int\limits_{0}^{H} {\lambda \left( {\gamma_{j} ,Y} \right)} \overline{\theta } {\text{d}}Y + \int\limits_{0}^{H} {\lambda \left( {\gamma_{j} ,Y} \right)} \frac{{\partial^{2} \overline{\theta } }}{{\partial Y^{{^{2} }} }}{\text{d}}Y - P_{\text{f}} \int\limits_{0}^{H} {\lambda \left( {\gamma_{j} ,Y} \right)} \overline{\theta } {\text{d}}Y + \underbrace {{\int\limits_{0}^{H} {\lambda \left( {\gamma_{j} ,Y} \right)} \overline{\text{G}}_{i} {\text{d}}Y}}_{{\overline{\overline{\text{G}}}_{ij} }} = \int\limits_{0}^{\text{H}} {\lambda \left( {\gamma_{j} ,Y} \right)} \frac{{\partial \overline{\theta } }}{\partial \tau }_{i} {\text{d}}Y $$
(79)

Then,

$$ - \mu_{i}^{2} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) + \underbrace {{\int\limits_{0}^{H} {\lambda \left( {\gamma_{j} ,Y} \right)} \frac{{\partial^{2} \overline{\theta } }}{{\partial Y^{{^{2} }} }}{\text{d}}Y}}_{{({\text{II}})}} - P_{\text{f}} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) + \overline{\overline{\text{G}}}_{ij} = \frac{{{\text{d}}\overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right)}}{{{\text{d}}\tau }} $$
(80)

Solving the integral (II) and using the Eqs. (67), (68) and Eqs. (72), (73).

$$ \begin{gathered} - \mu_{i}^{2} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) - \beta_{j}^{2} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) + {\text{Bi}}\theta_{\infty } \lambda \left( {\gamma_{j} ,0} \right)\int\limits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} {\text{d}}X \hfill \\ - \gamma_{j}^{2} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) + \beta_{j}^{2} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) + \overline{\overline{\text{G}}}_{ij} = \frac{{{\text{d}}\overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right)}}{{{\text{d}}\tau }} \hfill \\ \end{gathered} $$
(81)

Considering

$$ P_{ij} = {\text{Bi}}\theta_{\infty } \lambda \left( {\gamma_{j} ,0} \right)\int\limits_{0}^{1} {\Uppsi \left( {\mu_{i} ,X} \right)} {\text{d}}X + \overline{\overline{\text{G}}}_{ij} $$
(82)

The Eq. (81) is rewritten as

$$ \frac{{{\text{d}}\overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right)}}{{{\text{d}}\tau }} + \left( {\mu_{i}^{2} + \gamma_{j}^{2} } \right)\overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) = P_{ij} $$
(83)

Transforming the Eq. (69) in “Y”,

$$ \overline{\overline{{\overline{\theta } }}} \left( {\mu_{i} ,\gamma_{j} ,0} \right) = \int\limits_{0}^{\text{H}} {\int\limits_{0}^{1} {\lambda \left( {\gamma_{j} ,Y} \right) \, \Uppsi \left( {\mu_{i} ,X} \right)} \, \theta_{0} {\text{d}}X\;{\text{d}}Y} $$
(84)

Solving the Eqs. (83), (84) with the integrating factor, e.g., multiplying the Eq. (83) by \( {\text{e}}^{{\left( {\mu_{i}^{2} + \gamma_{j}^{2} } \right)}} \) and integrating from 0 to τ,

$$ \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,\tau } \right) = \frac{{P_{ij} }}{{\mu_{i}^{2} + \gamma_{j}^{2} }} - \frac{{{\text{e}}^{{ - \left( {\mu_{i}^{2} + \gamma_{j}^{2} } \right)\tau }} }}{{\mu_{i}^{2} + \gamma_{j}^{2} }}P_{ij} + {\text{e}}^{{ - \left( {\mu_{i}^{2} + \gamma_{j}^{2} } \right)\tau }} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,0} \right) $$
(85)

Replacing the Eq. (85) into Eq. (71) and using the Eq. (55) is obtained the analytical solution

$$ \theta \left( {X ,Y,\tau } \right) = \sum\limits_{i = 0}^{\infty } {\sum\limits_{j = 1}^{\infty } {\frac{{\Uppsi \left( {\mu_{\text{i}} ,X} \right)}}{{N\left( {\mu_{i} } \right)}}\frac{{\lambda \left( {\gamma_{j} ,Y} \right)}}{{M\left( {\gamma_{j} } \right)}} \cdot \left[ {\frac{{P_{ij} }}{{\mu_{i}^{2} + \gamma_{j}^{2} }} - \frac{{{\text{e}}^{{ - \left( {\mu_{i}^{2} + \gamma_{j}^{2} } \right)\tau }} }}{{\mu_{i}^{2} + \gamma_{j}^{2} }}P_{ij} + {\text{e}}^{{ - \left( {\mu_{i}^{2} + \gamma_{j}^{2} } \right)\tau }} \overline{{\overline{\theta } }} \left( {\mu_{i} ,\gamma_{j} ,0} \right)} \right]} } $$
(86)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, C.F.L., Souza, M.V.C., Colaço, M.J. et al. Inverse determination of blood perfusion coefficient by using different deterministic and heuristic techniques. J Braz. Soc. Mech. Sci. Eng. 36, 193–206 (2014). https://doi.org/10.1007/s40430-013-0065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-013-0065-3

Keywords

Navigation