Skip to main content
Log in

Cannabis Use and Cognitive Functioning Across the Lifespan

  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To examine the acute and long-term effects of cannabis use on cognitive functioning across the lifespan, and to evaluate the evidence for the hypothesis of developmental sensitivity to cannabis effects.

Recent Findings

Acute cannabis intoxication impairs cognitive functioning, and frequent cannabis use is associated with subtle cognitive deficits after intoxication has passed, in adolescence, young adulthood, and midlife. Longitudinal studies show that more frequent and longer-term cannabis use are associated with cognitive decline, though associations are small and inconsistent in studies of adolescents and young adults and small-moderate in studies of longer-term use to midlife. Older adults are understudied. Findings on prenatal and early postnatal cannabis exposure and cognitive functioning, though mixed, caution against use during pregnancy.

Summary

It seems likely that cannabis use is associated with cognitive deficits across the lifespan. However, the very young and the old are understudied, and there are few within-study comparisons of age differences in cognitive effects. The evidence on age-related differences in sensitivity to cannabis effects on cognitive functioning in humans is inconclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Zhornitsky S, Pelletier J, Assaf R, Giroux S, Chiang-shan RL, Potvin S. Acute effects of partial CB1 receptor agonists on cognition: a meta-analysis of human studies. Prog Neuro-Psychoph. 2021;104:110063 One of only two meta-analyses of cannabis administration studies focused on the acute cannabis (THC) effects on cognitive functions. Results showed that cannabis intoxication impaired a range of cognitive functions, with small to moderate effect sizes. Mean age was unrelated to the magnitude of cognitive impairment.

    Article  CAS  Google Scholar 

  2. Dellazizzo L, Potvin S, Giguère S, Dumais A. Evidence on the acute and residual neurocognitive effects of cannabis use in adolescents and adults: a systematic meta-review of meta-analyses. Addiction. 2022;117(7):1857–70.

    Article  PubMed  Google Scholar 

  3. Zamberletti E, Rubino T. Dos (e) age: role of dose and age in the long-term effect of cannabinoids on cognition. Molecules. 2022;27(4):1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. European Monitoring Centre for Drugs and Drug Addiction. European Drug Report 2020: Key Issues. Publications Office of the European Union. 2020. https://www.emcdda.europa.eu/publications/edr/trends-developments/2020_en. Accessed 15 Aug 2023.

  5. Mauro PM, Carliner H, Brown QL, Hasin DS, Shmulewitz D, Rahim-Juwel R, et al. Age differences in daily and nondaily cannabis use in the United States, 2002–2014. J Stud Alcohol Drugs. 2018;79(3):423–31.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen X, Yu B, Lasopa SO, Cottler LB. Current patterns of marijuana use initiation by age among US adolescents and emerging adults: implications for intervention. Am J Drug Alcohol Ab. 2017;43(3):261–70.

    Article  Google Scholar 

  7. Prini P, Zamberletti E, Manenti C, Gabaglio M, Parolaro D, Rubino T. Neurobiological mechanisms underlying cannabis-induced memory impairment. Eur Neuropsychopharm. 2020;36:181–90.

    Article  CAS  Google Scholar 

  8. Young-Wolff KC, Sarovar V, Tucker L-Y, Conway A, Alexeeff S, Weisner C, et al. Self-reported daily, weekly, and monthly cannabis use among women before and during pregnancy. JAMA Network Open. 2019;2(7):e196471-e.

    Article  Google Scholar 

  9. Volkow ND, Han B, Compton WM, McCance-Katz EF. Self-reported medical and nonmedical cannabis use among pregnant women in the United States. JAMA. 2019;322(2):167–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han BH, Palamar JJ. Trends in cannabis use among older adults in the United States, 2015–2018. JAMA Intern Med. 2020;180(4):609–11.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patrick ME, Schulenberg JE, Miech RA, Johnston LD, O’Malley PM, Bachman JG. Monitoring the Future Panel Study annual report: national data on substance use among adults ages 19 to 60, 1976–2021. Monitoring the Future Monograph Series. Ann Arbor: Institute for Social Research, The University of Michigan; 2022.

    Google Scholar 

  12. Blest-Hopley G, Giampietro V, Bhattacharyya S. A systematic review of human neuroimaging evidence of memory-related functional alterations associated with cannabis use complemented with preclinical and human evidence of memory performance alterations. Brain Sci. 2020;10(2):102.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ellingson JM, Hinckley JD, Ross JM, Schacht JP, Bidwell LC, Bryan AD, et al. The neurocognitive effects of cannabis across the lifespan. Curr Behav Neurosci Rep. 2021;8:124–33.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lichenstein SD, Manco N, Cope LM, Egbo L, Garrison KA, Hardee J, et al. Systematic review of structural and functional neuroimaging studies of cannabis use in adolescence and emerging adulthood: evidence from 90 studies and 9441 participants. Neuropsychopharmacol. 2022;47(5):1000–28.

    Article  Google Scholar 

  15. Currie C. Development is not the same as ageing: the relevance of puberty to health of adolescents. Int J Public Health. 2019;64(2):149–50.

    Article  PubMed  Google Scholar 

  16. Lu H-C, Mackie K. Review of the endocannabinoid system. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2021;6(6):607–15.

    PubMed  Google Scholar 

  17. Bara A, Ferland J-MN, Rompala G, Szutorisz H, Hurd YL. Cannabis and synaptic reprogramming of the developing brain. Nat Rev Neurosci. 2021;22(7):423–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Phil Trans R Soc B. 2012;367(1607):3326–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramaekers JG, Mason NL, Kloft L, Theunissen EL. The why behind the high: determinants of neurocognition during acute cannabis exposure. Nat Rev Neurosci. 2021;22(7):439–54.

    Article  CAS  PubMed  Google Scholar 

  20. Hirvonen J, Goodwin RS, Li CT, Terry GE, Zoghbi SS, Morse C, et al. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers. Mol Psychiatr. 2012;17(6):642–9.

    Article  CAS  Google Scholar 

  21. D’Souza DC, Cortes-Briones JA, Ranganathan M, Thurnauer H, Creatura G, Surti T, et al. Rapid changes in cannabinoid 1 receptor availability in cannabis-dependent male subjects after abstinence from cannabis. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2016;1(1):60–7.

    PubMed  Google Scholar 

  22. Testai FD, Gorelick PB, Aparicio HJ, Filbey FM, Gonzalez R, Gottesman RF, et al. Use of marijuana: effect on brain health: a scientific statement from the American Heart Association. Stroke. 2022;53(4):e176–87.

    Article  PubMed  Google Scholar 

  23. Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci. 2015;16(1):30–42.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hurd YL, Manzoni OJ, Pletnikov MV, Lee FS, Bhattacharyya S, Melis M. Cannabis and the developing brain: insights into its long-lasting effects. J Neurosci. 2019;39(42):8250–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Piyanova A, Lomazzo E, Bindila L, Lerner R, Albayram O, Ruhl T, et al. Age-related changes in the endocannabinoid system in the mouse hippocampus. Mech Ageing Dev. 2015;150:55–64.

    Article  CAS  PubMed  Google Scholar 

  26. Bilkei-Gorzo A, Drews E, Albayram Ö, Piyanova A, Gaffal E, Tueting T, et al. Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1−/− mice. Neurobiol Aging. 2012;33(1):200.e11-200.e22.

    Article  PubMed  Google Scholar 

  27. Kamaruzzaman MA, Romli MH, Abas R, Vidyadaran S, Hidayat Baharuldin MT, Nasaruddin ML, et al. Regulatory role of the endocannabinoid system on glial cells toward cognitive function in Alzheimer’s disease: a systematic review and meta-analysis of animal studies. Front Pharmacol. 2023;14:376.

    Article  Google Scholar 

  28. Bilkei-Gorzo A, Albayram O, Draffehn A, Michel K, Piyanova A, Oppenheimer H, et al. A chronic low dose of [Delta] 9-tetrahydrocannabinol (THC) restores cognitive function in old mice. Nat Med. 2017;23(6):782.

    Article  CAS  PubMed  Google Scholar 

  29. Sarne Y, Toledano R, Rachmany L, Sasson E, Doron R. Reversal of age-related cognitive impairments in mice by an extremely low dose of tetrahydrocannabinol. Neurobiol Aging. 2018;61:177–86.

    Article  CAS  PubMed  Google Scholar 

  30. Harada CN, Love MCN, Triebel KL. Normal cognitive aging. Clin Geriatr Med. 2013;29(4):737–52.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Torrens A, Vozella V, Huff H, McNeil B, Ahmed F, Ghidini A, et al. Comparative pharmacokinetics of Δ9-tetrahydrocannabinol in adolescent and adult male mice. J Pharmacol Exp Ther. 2020;374(1):151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327–60.

    Article  CAS  PubMed  Google Scholar 

  33. Knox EG, Aburto MR, Clarke G, Cryan JF, O’Driscoll CM. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatr. 2022;27(6):2659–73.

    Article  CAS  Google Scholar 

  34. Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev. 2009;41(2):67–76.

    Article  CAS  PubMed  Google Scholar 

  35. Antoniou T, Bodkin J, Ho JM-W. Drug interactions with cannabinoids. CMAJ. 2020;192(9):E206-E.

    Article  Google Scholar 

  36. Castellanos-Ryan N, Pingault J-B, Parent S, Vitaro F, Tremblay RE, Séguin JR. Adolescent cannabis use, change in neurocognitive function, and high-school graduation: a longitudinal study from early adolescence to young adulthood. Dev Psychopathol. 2017;29(4):1253–1266.

  37. Meier MH. Cannabis use and psychosocial functioning: evidence from prospective longitudinal studies. Curr Opin Psychol. 2021;38:19–24.

    Article  PubMed  Google Scholar 

  38. •• McCartney D, Arkell TR, Irwin C, McGregor IS. Determining the magnitude and duration of acute Δ9-tetrahydrocannabinol (Δ9-THC)-induced driving and cognitive impairment: a systematic and meta-analytic review. Neurosci Biobehav Rev. 2021;126:175–93 One of only two meta-analyses of cannabis administration studies focused on the acute cannabis (THC) effects on cognitive functions. Results showed that acute cannabis intoxication impaired driving performance and driving-related cognitive skills with small to small-moderate effect sizes.

    Article  CAS  PubMed  Google Scholar 

  39. Schlienz NJ, Spindle TR, Cone EJ, Herrmann ES, Bigelow GE, Mitchell JM, et al. Pharmacodynamic dose effects of oral cannabis ingestion in healthy adults who infrequently use cannabis. Drug Alcohol Depen. 2020;211:107969.

    Article  CAS  Google Scholar 

  40. • Spindle TR, Martin EL, Grabenauer M, Woodward T, Milburn MA, Vandrey R. Assessment of cognitive and psychomotor impairment, subjective effects, and blood THC concentrations following acute administration of oral and vaporized cannabis. J Psychopharmacol. 2021;35(7):786–803 A placebo-controlled, crossover design cannabis administration study that showed that cannabis (THC) impaired cognitive functioning immediately following vaped cannabis and hours later following oral cannabis. Furthermore, blood THC concentration was shown to be a poor proxy for impairment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Broyd SJ, van Hell HH, Beale C, Yücel M, Solowij N. Acute and chronic effects of cannabinoids on human cognition—a systematic review. Biol Psychiatry. 2016;79(7):557–67.

    Article  CAS  PubMed  Google Scholar 

  42. Osborne AL, Solowij N, Weston-Green K. A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia. Neurosci Biobehav Rev. 2017;72:310–24.

    Article  CAS  PubMed  Google Scholar 

  43. • Zamarripa CA, Spindle TR, Surujunarain R, Weerts EM, Bansal S, Unadkat JD, et al. Assessment of orally administered Δ9-tetrahydrocannabinol when coadministered with cannabidiol on Δ9-tetrahydrocannabinol pharmacokinetics and pharmacodynamics in healthy adults: a randomized clinical trial. JAMA Network Open. 2023;6(2):e2254752-e A placebo-controlled, crossover design cannabis administration study that showed that CBD exacerbated, as opposed to attenuated, the cognitively impairing effects of THC.

    Article  Google Scholar 

  44. • Englund A, Oliver D, Chesney E, Chester L, Wilson J, Sovi S, et al. Does cannabidiol make cannabis safer? A randomised, double-blind, cross-over trial of cannabis with four different CBD: THC ratios. Neuropsychopharmacology. 2023;48(6):869–76 A placebo-controlled, crossover design cannabis administration study that showed that THC impaired cognitive test performance, and the addition of CBD had no effect on THC-induced cognitive impairment.

    Article  CAS  PubMed  Google Scholar 

  45. Englund A, Morrison PD, Nottage J, Hague D, Kane F, Bonaccorso S, et al. Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol. 2013;27(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  46. Zamarripa CA, Vandrey R, Spindle TR. Factors that impact the pharmacokinetic and pharmacodynamic effects of cannabis: a review of human laboratory studies. Curr Addict Rep. 2022;9(4):608–21.

    Article  Google Scholar 

  47. Mokrysz C, Freeman TP, Korkki S, Griffiths K, Curran HV. Are adolescents more vulnerable to the harmful effects of cannabis than adults? A placebo-controlled study in human males. Transl Psychiat. 2016;6(11):e961-e.

    Article  Google Scholar 

  48. • Lawn W, Trinci K, Mokrysz C, Borissova A, Ofori S, Petrilli K, et al. The acute effects of cannabis with and without cannabidiol in adults and adolescents: a randomised, double-blind, placebo-controlled, crossover experiment. Addiction. 2023;118(7):1282–94 A placebo-controlled, crossover design cannabis administration study that showed that THC and THC+CBD acutely impaired cognitive functioning, and the effects were similar in adolescents and adults.

    Article  PubMed  PubMed Central  Google Scholar 

  49. • Murray CH, Huang Z, Lee R, de Wit H. Adolescents are more sensitive than adults to acute behavioral and cognitive effects of THC. Neuropsychopharmacology. 2022;47(7):1331–8 A placebo-controlled, crossover design cannabis administration study that showed that THC impaired cognitive test performance more for adolescents than for adults.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Freeman TP, Lorenzetti V. ‘Standard THC units’: a proposal to standardize dose across all cannabis products and methods of administration. Addiction. 2020;115(7):1207–16.

    Article  PubMed  Google Scholar 

  51. Ahmed AI, van den Elsen GA, Colbers A, van der Marck MA, Burger DM, Feuth TB, et al. Safety and pharmacokinetics of oral delta-9-tetrahydrocannabinol in healthy older subjects: a randomized controlled trial. Eur Neuropsychopharm. 2014;24(9):1475–82.

    Article  CAS  Google Scholar 

  52. Wolfe D, Corace K, Butler C, Rice D, Skidmore B, Patel Y, et al. Impacts of medical and non-medical cannabis on the health of older adults: findings from a scoping review of the literature. PLoS ONE. 2023;18(2):e0281826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. • Velayudhan L, McGoohan K, Bhattacharyya S. Safety and tolerability of natural and synthetic cannabinoids in adults aged over 50 years: a systematic review and meta-analysis. Plos Med. 2021;18(3):e1003524 A systematic review and meta-analysis of randomized controlled trials of cannabis-based medicines in older adults. Results showed that THC dose-dependently increased the risk of adverse events but was generally safe and tolerable.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • Mueller RL, Ellingson JM, Bidwell LC, Bryan AD, Hutchison KE. Are the acute effects of THC different in aging adults? Brain Sci. 2021;11(5):590 Study that showed few differences between older and younger adults on cognitive test performance following ad libitum cannabis use, when adjusting for pre-use test performance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Colizzi M, Bhattacharyya S. Cannabis use and the development of tolerance: a systematic review of human evidence. Neurosci Biobehav Rev. 2018;93:1–25.

    Article  CAS  PubMed  Google Scholar 

  56. Ramaekers J, Mason N, Theunissen E. Blunted highs: pharmacodynamic and behavioral models of cannabis tolerance. Eur Neuropsychopharm. 2020;36:191–205.

    Article  CAS  Google Scholar 

  57. • Ueno LF, Mian MN, Altman BR, Giandelone E, Luce M, Earleywine M. Age-related differences in cannabis product use. J Psychoactive Drugs. 2021;53(4):312–8 Cross-sectional survey that showed age-related differences in cannabis product use. For example, older adults were less likely than young adults to use cannabis concentrates.

    Article  PubMed  Google Scholar 

  58. Schreiner AM, Dunn ME. Residual effects of cannabis use on neurocognitive performance after prolonged abstinence: a meta-analysis. Exp Clin Psychopharm. 2012;20(5):420–9.

    Article  Google Scholar 

  59. Scott JC, Slomiak ST, Jones JD, Rosen AF, Moore TM, Gur RC. Association of cannabis with cognitive functioning in adolescents and young adults: a systematic review and meta-analysis. JAMA Psychiat. 2018;75(6):585–95.

    Article  Google Scholar 

  60. •• Lovell ME, Akhurst J, Padgett C, Garry MI, Matthews A. Cognitive outcomes associated with long-term, regular, recreational cannabis use in adults: a meta-analysis. Exp Clin Psychopharm. 2020;28(4):471 A meta-analyses of studies comparing long-term (mean ≥ 2 years) regular (mean ≥ 4 days a week) cannabis users with comparison individuals on cognitive test performance after an average of 12 h of abstinence. Cannabis users showed small cognitive deficits in some cognitive domains (e.g., learning and memory) but not others (e.g., attention). There were no differences in cognitive test performance between early- and late-onset cannabis users.

    Article  Google Scholar 

  61. •• Krzyzanowski DJ, Purdon SE. Duration of abstinence from cannabis is positively associated with verbal learning performance: a systematic review and meta-analysis. Neuropsychology. 2020;34(3):359 A meta-analysis of studies comparing cannabis users and nonusers on verbal learning and memory test performance. Cannabis users who were abstinent for 7 or fewer days showed moderate deficits relative to nonusers. Cannabis users who were abstinent for longer than 7 days did not show deficits. Age of regular cannabis use was not related to verbal learning and memory test performance.

    Article  PubMed  Google Scholar 

  62. • Figueiredo PR, Tolomeo S, Steele JD, Baldacchino A. Neurocognitive consequences of chronic cannabis use: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2020;108:358–69 A meta-analysis of studies comparing adult cannabis users and nonusers/infrequent cannabis users on cognitive test performance after at least 12 h of abstinence. Cannabis users showed small to moderate deficits across most cognitive domains.

    Article  PubMed  Google Scholar 

  63. Schoeler T, Kambeitz J, Behlke I, Murray R, Bhattacharyya S. The effects of cannabis on memory function in users with and without a psychotic disorder: findings from a combined meta-analysis. Psychol Med. 2016;46(1):177–88.

    Article  CAS  PubMed  Google Scholar 

  64. Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci USA. 2012;109(40):E2657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morin J-FG, Afzali MH, Bourque J, Stewart SH, Séguin JR, O’Leary-Barrett M, et al. A population-based analysis of the relationship between substance use and adolescent cognitive development. Am J Psychiat. 2019;176(2):98–106.

    Article  PubMed  Google Scholar 

  66. •• Power E, Sabherwal S, Healy C, O’Neill A, Cotter D, Cannon M. Intelligence quotient decline following frequent or dependent cannabis use in youth: a systematic review and meta-analysis of longitudinal studies. Psychol Med. 2021;51(2):194–200 A meta-analysis of longitudinal studies of cannabis-related IQ decline in young people. Results showed that frequent or dependent cannabis use was associated with decline in full-scale IQ (two-point decline) and verbal IQ but not performance IQ.

    Article  PubMed  PubMed Central  Google Scholar 

  67. •• Meier MH, Caspi A, Knodt AR, Hall W, Ambler A, Harrington H, et al. Long-term cannabis use and cognitive reserves and hippocampal volume in midlife. Am J Psychiat. 2022;179(5):362–74 A prospective longitudinal study of a representative cohort followed from birth to midlife. Results showed that long-term cannabis users showed poorer learning and processing speed relative to non-users and four other informative comparison groups, with evidence of dose-response associations between persistence of cannabis use and cognitive functioning even after extensive covariate adjustment.

    Article  PubMed  Google Scholar 

  68. Jackson NJ, Isen JD, Khoddam R, Irons D, Tuvblad C, Iacono WG, et al. Impact of adolescent marijuana use on intelligence: results from two longitudinal twin studies. P Natl Acad Sci USA. 2016;113(5):E500–8. https://doi.org/10.1073/pnas.1516648113.

    Article  CAS  Google Scholar 

  69. Auer R, Vittinghoff E, Yaffe K, Künzi A, Kertesz SG, Levine DA, et al. Association between lifetime marijuana use and cognitive function in middle age: the Coronary Artery Risk Development in Young Adults (CARDIA) study. JAMA Intern Med. 2016;176(3):352–61.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rosen AS, Sodos LM, Hirst RB, Vaughn D, Lorkiewicz SA. Cream of the crop: clinical representativeness of eligible and ineligible cannabis users in research. Subst Use Misuse. 2018;53(12):1937–50.

    Article  PubMed  Google Scholar 

  71. Meier MH, Caspi A, Ambler A, Hariri AR, Harrington H, Hogan S, et al. Preparedness for healthy ageing and polysubstance use in long-term cannabis users: a population-representative longitudinal study. Lancet Healthy Longev. 2022;3(10):e703–14.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Solowij N, Stephens RS, Roffman RA, Babor T, Kadden R, Miller M, et al. Cognitive functioning of long-term heavy cannabis users seeking treatment. JAMA. 2002;287(9):1123–31.

    Article  PubMed  Google Scholar 

  73. Wagner D, Becker B, Gouzoulis-Mayfrank E, Daumann J. Interactions between specific parameters of cannabis use and verbal memory. Prog Neuro-Psychopha. 2010;34(6):871–6.

    Article  Google Scholar 

  74. Fried PA, Watkinson B, Gray R. Neurocognitive consequences of marihuana - a comparison with pre-drug performance. Neurotoxicol Teratol. 2005;27(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  75. Tait RJ, Mackinnon A, Christensen H. Cannabis use and cognitive function: 8-year trajectory in a young adult cohort. Addiction. 2011;106(12):2195–203.

    Article  PubMed  Google Scholar 

  76. Hanson KL, Winward JL, Schweinsburg AD, Medina KL, Brown SA, Tapert SF. Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence. Addict Behav. 2010;35(11):970–6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Pope HG, Gruber AJ, Hudson JI, Huestis MA, Yurgelun-Todd D. Neuropsychological performance in long-term cannabis users. Arch Gen Psychiatry. 2001;58(10):909–15.

    Article  PubMed  Google Scholar 

  78. Wallace AL, Wade NE, Lisdahl KM. Impact of two-weeks of monitored abstinence on cognition in adolescent and young adult cannabis users. J Int Neuropsych Soc. 2020;26(8):776.

    Article  Google Scholar 

  79. Roten A, Baker NL, Gray KM. Cognitive performance in a placebo-controlled pharmacotherapy trial for youth with marijuana dependence. Addict Behav. 2015;45:119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schuster RM, Gilman J, Schoenfeld D, et al. One month of cannabis abstinence in adolescents and young adults is associated with improved memory. J Clin Psychiat. 2018;79(6):17m11977.

  81. Ganzer F, Bröning S, Kraft S, Sack P-M, Thomasius R. Weighing the evidence: a systematic review on long-term neurocognitive effects of cannabis use in abstinent adolescents and adults. Neuropsychol Rev. 2016;26(2):186–222.

    Article  PubMed  Google Scholar 

  82. • Willford JA, Goldschmidt L, De Genna NM, Day NL, Richardson GA. A longitudinal study of the impact of marijuana on adult memory function: prenatal, adolescent, and young adult exposures. Neurotoxicol Teratol. 2021;84:106958 A longitudinal study of youth, some of whom were exposed prenatally to cannabis or alcohol. Results revealed that youth who initiated cannabis use before age 15 showed memory deficits at age 22, even after adjusting for maternal education, prenatal exposure to substances, and a variety of other covariates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wendel LK, Daedelow L, Kaminski J, Banaschewski T, Millenet S, Bokde AL, et al. Residual effects of cannabis-use on neuropsychological functioning. Cognitive Dev. 2021;59:101072.

    Article  Google Scholar 

  84. Ajmera N, Collins PF, Weiss H, Luciana M. Initiation of moderately frequent cannabis use in adolescence and young adulthood is associated with declines in verbal learning and memory: a longitudinal comparison of pre-versus post-initiation cognitive performance. J Int Neuropsych Soc. 2021;27(6):621–36.

    Article  Google Scholar 

  85. Mahedy L, Wootton R, Suddell S, Skirrow C, Field M, Heron J, et al. Testing the association between tobacco and cannabis use and cognitive functioning: findings from an observational and Mendelian randomization study. Drug Alcohol Depen. 2021;221:108591.

    Article  Google Scholar 

  86. Infante MA, Nguyen-Louie TT, Worley M, Courtney KE, Coronado C, Jacobus J. Neuropsychological trajectories associated with adolescent alcohol and cannabis use: a prospective 14-year study. J Int Neuropsych Soc. 2020;26(5):480–91.

    Article  Google Scholar 

  87. Noorbakhsh S, Afzali MH, Boers E, Conrod PJ. Cognitive function impairments linked to alcohol and cannabis use during adolescence: a study of gender differences. Front Hum Neurosci. 2020;14:95.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ross JM, Ellingson JM, Rhee SH, Hewitt JK, Corley RP, Lessem JM, et al. Investigating the causal effect of cannabis use on cognitive function with a quasi-experimental co-twin design. Drug Alcohol Depen. 2020;206:107712.

    Article  Google Scholar 

  89. Duperrouzel JC, Hawes SW, Lopez-Quintero C, Pacheco-Colón I, Coxe S, Hayes T, et al. Adolescent cannabis use and its associations with decision-making and episodic memory: preliminary results from a longitudinal study. Neuropsychology. 2019;33(5):701.

    Article  PubMed  Google Scholar 

  90. Barthelemy OJ, Richardson MA, Heeren TC, Chen CA, Liebschutz JM, Forman LS, et al. Do differences in learning performance precede or follow initiation of marijuana use? J Stud Alcohol Drugs. 2019;80(1):5–14.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Becker MP, Collins PF, Schultz A, Urošević S, Schmaling B, Luciana M. Longitudinal changes in cognition in young adult cannabis users. J Clin Exp Neuropsyc. 2018;40(6):529–43.

    Article  Google Scholar 

  92. Meier MH, Caspi A, Danese A, Fisher HL, Houts R, Arseneault L, et al. Associations between adolescent cannabis use and neuropsychological decline: a longitudinal co-twin control study. Addiction. 2018;113(2):257–65.

    Article  PubMed  Google Scholar 

  93. Tervo-Clemmens B, Simmonds D, Calabro FJ, Montez DF, Lekht JA, Day NL, et al. Early cannabis use and neurocognitive risk: a prospective functional neuroimaging study. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2018;3(8):713–25.

    PubMed  Google Scholar 

  94. Boccio CM, Beaver KM. Examining the influence of adolescent marijuana use on adult intelligence: further evidence in the causation versus spuriousness debate. Drug Alcohol Depen. 2017;177:199–206.

    Article  Google Scholar 

  95. Camchong J, Lim KO, Kumra S. Adverse effects of cannabis on adolescent brain development: a longitudinal study. Cereb Cortex. 2017;27(3):1922–30.

    PubMed  Google Scholar 

  96. Mokrysz C, Landy R, Gage S, Munafò M, Roiser J, Curran H. Are IQ and educational outcomes in teenagers related to their cannabis use? A prospective cohort study. J Psychopharmacol. 2016;30(2):159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lyons MJ, Bar J, Panizzon M, Toomey R, Eisen S, Xian H, et al. Neuropsychological consequences of regular marijuana use: a twin study. Psychol Med. 2004;34(7):1239–50.

    Article  CAS  PubMed  Google Scholar 

  98. Pope HG, Gruber AJ, Hudson JI, Cohane G, Huestis MA, Yurgelun-Todd D. Early-onset cannabis use and cognitive deficits: what is the nature of the association? Drug Alcohol Depen. 2003;69(3):303–10.

    Article  Google Scholar 

  99. Fletcher JM, Page JB, Francis DJ, Copeland K, Naus MJ, Davis CM, et al. Cognitive correlates of long-term cannabis use in Costa Rican men. Arch Gen Psychiatry. 1996;53(11):1051–7.

    Article  CAS  PubMed  Google Scholar 

  100. Yücel M, Solowij N, Respondek C, Whittle S, Fornito A, Pantelis C, et al. Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry. 2008;65(6):694–701.

    Article  PubMed  Google Scholar 

  101. Thayer RE, YorkWilliams SL, Hutchison KE, Bryan AD. Preliminary results from a pilot study examining brain structure in older adult cannabis users and nonusers. Psychiatry Res-Neuroim. 2019;285:58–63.

    Article  Google Scholar 

  102. Stypulkowski K, Thayer RE. Long-term recreational cannabis use is associated with lower executive function and processing speed in a pilot sample of older adults. J Geriatr Psych Neur. 2022;35(5):740–6.

    Article  Google Scholar 

  103. Burggren AC, Siddarth P, Mahmood Z, London ED, Harrison TM, Merrill DA, et al. Subregional hippocampal thickness abnormalities in older adults with a history of heavy cannabis use. Cannabis Cannabinoid Res. 2018;3(1):242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Han BH, Sherman S, Mauro PM, Martins SS, Rotenberg J, Palamar JJ. Demographic trends among older cannabis users in the United States, 2006–13. Addiction. 2017;112(3):516–25.

    Article  PubMed  Google Scholar 

  105. Pasquier B, Yaffe K, Levine DA, Rana JS, Pletcher MJ, Tal K, et al. Sex differences in the association between cumulative use of cannabis and cognitive function in middle age: the Coronary Artery Risk Development in Young Adults Study. Cannabis Cannabinoid Res. 2023. https://doi.org/10.1089/can.2022.0343.

    Article  PubMed  Google Scholar 

  106. Dregan A, Gulliford MC. Is illicit drug use harmful to cognitive functioning in the midadult years? A cohort-based investigation. Am J Epidemiol. 2012;175(3):218–27.

    Article  PubMed  Google Scholar 

  107. McKetin R, Parasu P, Cherbuin N, Eramudugolla R, Anstey KJ. A longitudinal examination of the relationship between cannabis use and cognitive function in mid-life adults. Drug Alcohol Depen. 2016;169:134–40.

    Article  Google Scholar 

  108. Herrmann N, Ruthirakuhan M, Gallagher D, Verhoeff NPL, Kiss A, Black SE, et al. Randomized placebo-controlled trial of nabilone for agitation in Alzheimer’s disease. Am J Geriat Psychiat. 2019;27(11):1161–73.

    Article  Google Scholar 

  109. Scott EP, Brennan E, Benitez A. A systematic review of the neurocognitive effects of cannabis use in older adults. Curr Addict Rep. 2019;6(4):443–55.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sagar KA, Dahlgren MK, Lambros AM, Smith RT, El-Abboud C, Gruber SA. An observational, longitudinal study of cognition in medical cannabis patients over the course of 12 months of treatment: preliminary results. J Int Neuropsych Soc. 2021;27(6):648–60.

    Article  Google Scholar 

  111. Choi NG, DiNitto DM, Marti CN. Nonmedical versus medical marijuana use among three age groups of adults: associations with mental and physical health status. Am J Addict. 2017;26(7):697–706.

    Article  PubMed  Google Scholar 

  112. Turna J, Balodis I, Munn C, Van Ameringen M, Busse J, MacKillop J. Overlapping patterns of recreational and medical cannabis use in a large community sample of cannabis users. Compr Psychiat. 2020;102:152188.

    Article  PubMed  Google Scholar 

  113. Meier MH, Meier MA, Anderson SF, Schaffer AL, Waddell JT, Roman BA, et al. The effects of the 4/20 cannabis holiday and adult-use cannabis legalization on medical cannabis sales and medical cannabis patient registration in Arizona. Int J Drug Policy. 2023;114:103974.

    Article  PubMed  Google Scholar 

  114. Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Femenía T, Manzanares J. Cannabis use in pregnant and breastfeeding women: behavioral and neurobiological consequences. Front Psychiatry. 2020;11:586447.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bertrand KA, Hanan NJ, Honerkamp-Smith G, Best BM, Chambers CD. Marijuana use by breastfeeding mothers and cannabinoid concentrations in breast milk. Pediatrics. 2018;142(3):e20181076. https://doi.org/10.1542/peds.2018-1076.

  116. De Genna NM, Willford JA, Richardson GA. Long-term effects of prenatal cannabis exposure: pathways to adolescent and adult outcomes. Pharmacol Biochem Behav. 2022;214:173358.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Richardson KA, Hester AK, McLemore GL. Prenatal cannabis exposure-the “first hit” to the endocannabinoid system. Neurotoxicol Teratol. 2016;58:5–14.

    Article  CAS  PubMed  Google Scholar 

  118. Grant KS, Petroff R, Isoherranen N, Stella N, Burbacher TM. Cannabis use during pregnancy: pharmacokinetics and effects on child development. Pharmacol Therapeut. 2018;182:133–51.

    Article  CAS  Google Scholar 

  119. •• Corsi DJ, Donelle J, Sucha E, Hawken S, Hsu H, El-Chaâr D, et al. Maternal cannabis use in pregnancy and child neurodevelopmental outcomes. Nat Med. 2020;26(10):1536–40 A study that linked pregnancy and birth records in Ontario, Canada, with health administrative data to show that prenatal cannabis exposure was associated with increased risk of intellectual disability and learning disorders after age 4 years. Associations were not statistically significant after matching exposed and unexposed children on covariates.

    Article  CAS  PubMed  Google Scholar 

  120. • Paul SE, Hatoum AS, Fine JD, Johnson EC, Hansen I, Karcher NR, et al. Associations between prenatal cannabis exposure and childhood outcomes: results from the ABCD study. JAMA Psychiat. 2021;78(1):64–76 >A cross-sectional study documenting an association between prenatal cannabis exposure and poorer performance on a cognitive test composite at age 10 years. However, associations were not robust to covariate adjustment.

    Article  Google Scholar 

  121. • Hiraoka D, Makita K, Hamatani S, Tomoda A, Mizuno Y. Effects of prenatal cannabis exposure on developmental trajectory of cognitive ability and brain volumes in the adolescent brain cognitive development (ABCD) study. Dev Cogn Neuros-Neth. 2023;60:101209 A study of a large cohort that showed that prenatal cannabis exposure was associated with worse performance on cognitive tests across baseline (age 10) and follow-up (age 12), but not after adjusting for covariates. Cognitive functioning improved from age 10 to 12 years for all youth, but performance on the visuospatial test improved less for youth with prenatal cannabis exposure, even after adjusting for covariates.

    Article  CAS  Google Scholar 

  122. Tennes K, Avitable N, Blackard C, Boyles C, Hassoun B, Holmes L, et al. Marijuana: prenatal and postnatal exposure in the human. NIDA Res Monogr. 1985;59:48–60.

    CAS  PubMed  Google Scholar 

  123. Astley SJ, Little RE. Maternal marijuana use during lactation and infant development at one year. Neurotoxicol Teratol. 1990;12(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  124. Lo JO, Shaw B, Robalino S, Ayers CK, Durbin S, Rushkin MC, et al. Cannabis use in pregnancy and neonatal outcomes: a systematic review and meta-analysis. Cannabis Cannabinoid Res. 2023. https://doi.org/10.1089/can.2022.0262.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Gorey C, Kuhns L, Smaragdi E, Kroon E, Cousijn J. Age-related differences in the impact of cannabis use on the brain and cognition: a systematic review. Eur Arch Psychiatry Clin Neurosci. 2019;269:37–58.

    Article  PubMed  PubMed Central  Google Scholar 

  126. • Lawn W, Fernandez-Vinson N, Mokrysz C, Hogg G, Lees R, Trinci K, et al. The CannTeen study: verbal episodic memory, spatial working memory, and response inhibition in adolescent and adult cannabis users and age-matched controls. Psychopharmacology. 2022;239(5):1629–41 One of only a few studies that compared adolescent and adult cannabis users on cognitive test performance. Results showed no evidence of adolescent sensitivity to cannabis effects.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ruiz C, Torrens A, Lallai V, Castillo E, Manca L, Martinez M, et al. Pharmacokinetic and pharmacodynamic properties of aerosolized (“vaped”) THC in adolescent male and female rats. Psychopharmacology. 2021;238:3595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bhattacharyya S, Iyegbe C, Atakan Z, Martin-Santos R, Crippa J, Xu X, et al. Protein kinase B (AKT1) genotype mediates sensitivity to cannabis-induced impairments in psychomotor control. Psychol Med. 2014;44(15):3315–28.

    Article  CAS  PubMed  Google Scholar 

  129. Miyake A, Emerson MJ, Friedman NP. Assessment of executive functions in clinical settings: problems and recommendations. Semin Speech Lang. 2000;21(2):169–83.

    Article  CAS  PubMed  Google Scholar 

  130. Freeman TP, Craft S, Wilson J, Stylianou S, ElSohly M, Di Forti M, et al. Changes in delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) concentrations in cannabis over time: systematic review and meta-analysis. Addiction. 2021;116(5):1000–10.

    Article  PubMed  Google Scholar 

  131. ElSohly MA, Chandra S, Radwan M, Gon C, Church JC. A comprehensive review of cannabis potency in the USA in the last decade. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2021;6(6):603–6.

    PubMed  Google Scholar 

  132. Cash MC, Cunnane K, Fan C, Romero-Sandoval EA. Mapping cannabis potency in medical and recreational programs in the United States. PLoS ONE. 2020;15(3):e0230167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cerdá M, Mauro C, Hamilton A, Levy NS, Santaella-Tenorio J, Hasin D, et al. Association between recreational marijuana legalization in the United States and changes in marijuana use and cannabis use disorder from 2008 to 2016. JAMA Psychiat. 2020;77(2):165–71.

    Article  Google Scholar 

Download references

Funding

Work was supported by National Institute on Aging grant R01AG069939.

Author information

Authors and Affiliations

Authors

Contributions

M.M. wrote the manuscript text.

M.M. prepared STable 1.

All authors revised the manuscript and agree to be accountable for the work.

Corresponding author

Correspondence to Madeline H. Meier.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39.9 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, M.H., Olive, M.F., Jenks, O.A. et al. Cannabis Use and Cognitive Functioning Across the Lifespan. Curr Addict Rep (2024). https://doi.org/10.1007/s40429-024-00571-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40429-024-00571-1

Keywords

Navigation