Skip to main content

Advertisement

Log in

Impulsivity and Reward Processing Endophenotypes in Youth Alcohol Misuse

  • Adolescent / Young Adult Addiction (T Chung, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We describe the contribution of impulsivity and reward processing endophenotypes to understanding youth alcohol misuse. We discuss studies that included self-report, behavioral, and neural measures of these endophenotypes.

Recent Findings

Regarding impulsivity, youth who misuse alcohol tend to engage in suboptimal decision-making and have increased urgency—diminished self-control due to emotional disruption. There is some evidence that prefrontal and parietal brain regions are hypoactive during response inhibition tasks in low-to-moderate alcohol misuse, with hyperactivation of dorsolateral prefrontal cortex and cingulate cortex associated with heavier misuse. Increased self-reported reward sensitivity is a risk factor for adolescent alcohol-use. Brain responses to rewards in youth alcohol misusers have produced inconsistent findings, perhaps due to the influence of other factors, such as family history and pubertal status at first drinking episode.

Summary

Understanding of the etiology and generating preventative strategies for youth alcohol misuse could be enhanced by the accurate characterization of endophenotypes related to impulsivity and reward sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Zeigler DW, Wang CC, Yoast RA, Dickinson BD, McCaffree MA, Robinowitz CB, et al. The neurocognitive effects of alcohol on adolescents and college students. Prev Med. 2005;40(1):23–32. https://doi.org/10.1016/j.ypmed.2004.04.044.

    Article  CAS  PubMed  Google Scholar 

  2. White A, Hingson R. The burden of alcohol use: excessive alcohol consumption and related consequences among college students. Alcohol Res. 2014;35(2):201.

    PubMed Central  Google Scholar 

  3. Jang JB, Patrick ME, Keyes KM, Hamilton AD, Schulenberg JE. Frequent binge drinking among US adolescents, 1991 to 2015. Pediatrics. 2017;139(6):e20164023. https://doi.org/10.1542/peds.2016-4023.

    Article  PubMed  Google Scholar 

  4. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5, fifth ed. American Psychiatric Association; 2013.

  5. Gottesman II, Gould TD. The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry. 2003;160(4):636–45. https://doi.org/10.1176/appi.ajp.160.4.636.

    Article  PubMed  Google Scholar 

  6. Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cog Sci. 2012;16(1):81–91. https://doi.org/10.1016/j.tics.2011.11.009.

    Article  Google Scholar 

  7. O'Halloran L, Nymberg C, Jollans L, Garavan H, Whelan R. The potential of neuroimaging for identifying predictors of adolescent alcohol use initiation and misuse. Addiction. 2016;112(4):719–26. https://doi.org/10.1111/add.13629.

    Article  PubMed  Google Scholar 

  8. Hingson RW, Heeren T, Winter MR. Age at drinking onset and alcohol dependence: age at onset, duration, and severity. Arch Pediatr Adolesc Med. 2006;160(7):739–46. https://doi.org/10.1001/archpedi.160.7.739.

    Article  PubMed  Google Scholar 

  9. Yip SW, Potenza MN. Application of research domain criteria to childhood and adolescent impulsive and addictive disorders: implications for treatment. Clin Psychol Rev. 2016; https://doi.org/10.1016/j.cpr.2016.11.003.

  10. Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Prog Neurobiol. 2013;108:44–79. https://doi.org/10.1016/j.pneurobio.2013.06.005.

    Article  PubMed  Google Scholar 

  11. Dalley JW, Robbins TW. Fractionating impulsivity: neuropsychiatric implications. Nat Rev Neurosci. 2017;18(3):158–71. https://doi.org/10.1038/nrn.2017.8.

    Article  CAS  PubMed  Google Scholar 

  12. Caswell AJ, Bond R, Duka T, Morgan MJ. Further evidence of the heterogeneous nature of impulsivity. Personal Individ Differ. 2015;76:68–74. https://doi.org/10.1016/j.paid.2014.11.059.

    Article  Google Scholar 

  13. Robbins TW, Dalley JW. Dissecting impulsivity: brain mechanisms and neuropsychiatric implications. In: Stevens JR, editor. Impulsivity: how time and risk influence decision making. New York: Springer International Publishing; 2017.

    Google Scholar 

  14. King KM, Patock-Peckham JA, Dager AD, Thimm K, Gates JR. On the mismeasurement of impulsivity: trait, behavioral, and neural models in alcohol research among adolescents and young adults. Curr Addict Rep. 2014;1(1):19–32.

    Article  Google Scholar 

  15. Mitchell MR, Potenza MN. Recent insights into the neurobiology of impulsivity. Curr Addict Rep. 2014;1(4):309–19.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Whiteside SP, Lynam DR. Understanding the role of impulsivity and externalizing psychopathology in alcohol abuse: application of the UPPS impulsive behavior scale. Exp Clin Psychopharmacol. 2003;11(3):210–7.

    Article  PubMed  Google Scholar 

  17. Whiteside SP, Lynam DR. The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Personal Individ Differ. 2001;30(4):669–89. https://doi.org/10.1016/S0191-8869(00)00064-7.

    Article  Google Scholar 

  18. Patton JH, Stanford MS. Factor structure of the Barratt impulsiveness scale. Clin Psychol Rev. 1995;51(6):768–74.

    Article  CAS  Google Scholar 

  19. Woicik PA, Stewart SH, Pihl RO, Conrod PJ. The substance use risk profile scale: a scale measuring traits linked to reinforcement-specific substance use profiles. Addict Behav. 2009;34(12):1042–55. https://doi.org/10.1016/j.addbeh.2009.07.001.

    Article  PubMed  Google Scholar 

  20. Stautz K, Cooper A. Impulsivity-related personality traits and adolescent alcohol use: a meta-analytic review. Clin Psychol Rev. 2013;33(4):574–92. https://doi.org/10.1016/j.cpr.2013.03.003.

    Article  PubMed  Google Scholar 

  21. • Jurk S, Kuitunen-Paul S, Kroemer NB, Artiges E, Banaschewski T, Bokde AL, et al. Personality and substance use: psychometric evaluation and validation of the substance use risk profile scale (SURPS) in English, Irish, French, and German adolescents. Alcohol Clin Exp Res. 2015;39(11):2234–48. https://doi.org/10.1111/acer.12886. Evaluated psychometric utility of SURPS in 2,022 13-15-year-old adolescents at baseline and 2 years later. Reliability was fair-to-good with moderate test–retest reliability. Impulsivity and sensation seeking were significantly associated with drinking motives “coping with anxiety” or “coping with depression,” on the Drinking Motives Questionnaire, regardless of alcohol consumption levels.

    Article  PubMed  Google Scholar 

  22. Shin SH, Hong HG, Jeon SM. Personality and alcohol-use: the role of impulsivity. J Addict Behav. 2012;37(1):102–7. https://doi.org/10.1016/j.addbeh.2011.09.006.

    Article  Google Scholar 

  23. Shin SH, Lee S, Jeon SM, Wills TA. Childhood emotional abuse, negative emotion-driven impulsivity, and alcohol-use in young adulthood. Child Abuse Negl. 2015;50:94–103. https://doi.org/10.1016/j.chiabu.2015.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kaiser A, Bonsu JA, Charnigo RJ, Milich R, Lynam DR. Impulsive personality and alcohol-use: bidirectional relations over one year. J Stud Alcohol Drugs. 2016;77(3):473–82. 10.15288/jsad.2016.77.473.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Stojek M, Fischer S. Impulsivity and motivations to consume alcohol: a prospective study on risk of dependence in young adult women. Alcohol Clin Exp Res. 2013;37(2):292–9. https://doi.org/10.1111/j.1530-0277.2012.01875.x.

    Article  PubMed  Google Scholar 

  26. Cyders MA. Impulsivity and the sexes: measurement and structural invariance of the UPPS-P impulsive behavior scale. Assessment. 2013;20(1):86–97. https://doi.org/10.1177/1073191111428762.

    Article  PubMed  Google Scholar 

  27. • Wardell JD, Quilty LC, Hendershot CS. Impulsivity, working memory, and impaired control over alcohol: a latent variable analysis. Psychol Addict Behav. 2016;30(5):544. https://doi.org/10.1037/adb0000186. Two higher-order trait impulsivity factors were identified using UPPS-P and BIS-11 in 300 18–25 year-old heavy drinkers. The first factor, response impulsivity , accounted for unique variance in self-reported impaired control over alcohol and in alcohol problems. The second factor, reflection impulsivity , accounted for unique variance in heavy drinking frequency only.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sobell LC, Sobell MB. Timeline followback: a technique for assessing self-reported ethanol consumption. In: Allen J, Litten RZ, editors. Measuring alcohol consumption: psychosocial and biological methods. Totowa: Humana Press; 1992. p. 41–72.

    Chapter  Google Scholar 

  29. Logan GD, Cowan WB. On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev. 1984;91(3):295. https://doi.org/10.1037/0033-295X.91.3.295.

    Article  Google Scholar 

  30. Georgiou G, Essau CA. Go/No-Go Task. In: Goldstein S, Nagelieri JA, editors. Encyclopedia of child behavior and development. Boston: Springer US; 2011. p. 705–6.

    Google Scholar 

  31. Petit G, Kornreich C, Noël X, Verbanck P, Campanella S. Alcohol-related context modulates performance of social drinkers in a visual go/no-go task: a preliminary assessment of event-related potentials. PLoS One. 2012;17(5):e37466. https://doi.org/10.1371/journal.pone.0037466.

    Article  Google Scholar 

  32. Czapla M, Baeuchl C, Simon JJ, Richter B, Kluge M, Friederich HC, et al. Do alcohol-dependent patients show different neural activation during response inhibition than healthy controls in an alcohol-related fMRI go/no-go-task? Psychopharmacology. 2017;234(6):1001–15. https://doi.org/10.1007/s00213-017-4541-9.

    Article  CAS  PubMed  Google Scholar 

  33. Cope LM, Heitzeg MM, Hardee JE, Martz ME. Neuroimaging risk markers for substance abuse: recent findings on inhibitory control and reward system functioning. Curr Addict Rep. 2015;2(2):91–103.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Whelan R, Conrod PJ, Poline JB, Lourdusamy A, Banaschewski T, Barker GJ, et al. Adolescent impulsivity phenotypes characterized by distinct brain networks. Nat Neurosci. 2012;15(6):920–5. https://doi.org/10.1038/nn.3092.

    Article  CAS  PubMed  Google Scholar 

  35. Ahmadi A, Pearlson GD, Meda SA, Dager A, Potenza MN, Rosen R, et al. Influence of alcohol-use on neural response to go/no-go task in college drinkers. Neuropsychopharmacology. 2013;38(11):2197–208. https://doi.org/10.1038/npp.2013.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ames SL, Wong SW, Bechara A, Cappelli C, Dust M, Grenard JL, et al. Neural correlates of a go/NoGo task with alcohol stimuli in light and heavy young drinkers. Behav Brain Res. 2014;274:382–9. https://doi.org/10.1016/j.bbr.2014.08.039.

    Article  PubMed  Google Scholar 

  37. Wetherill RR, Squeglia LM, Yang TT, Tapert SF. A longitudinal examination of adolescent response inhibition: neural differences before and after the initiation of heavy drinking. Psychopharmacology. 2013;230:663–71. https://doi.org/10.1007/s00213-013-3198-2.

    Article  CAS  PubMed  Google Scholar 

  38. Worhunsky PD, Dager AD, Meda SA, Khadka S, Stevens MC, Austad CS, et al. A preliminary prospective study of an escalation in ‘maximum daily drinks’, fronto-parietal circuitry and impulsivity-related domains in young adult drinkers. Neuropsychopharmacology. 2016;41(6):1637–47. https://doi.org/10.1007/s00213-013-3198-2.

    Article  PubMed  Google Scholar 

  39. Beltz AM, Gates KM, Engels AS, Molenaar PC, Pulido C, Turrisi R, et al. Changes in alcohol-related brain networks across the first year of college: a prospective pilot study using fMRI effective connectivity mapping. J Addict Behav. 2013;38(4):2052–9. https://doi.org/10.1016/j.addbeh.2012.12.023.

    Article  Google Scholar 

  40. López-Caneda E, Cadaveira F, Crego A, Gómez-Suárez A, Corral M, Parada M, et al. Hyperactivation of right inferior frontal cortex in young binge-drinkers during response inhibition: a follow-up study. Addiction. 2012;107(10):1796–808. https://doi.org/10.1111/j.1360-0443.2012.03908.x.

    Article  PubMed  Google Scholar 

  41. Wetherill RR, Castro N, Squeglia LM, Tapert SF. Atypical neural activity during inhibitory processing in substance-naïve youth who later experience alcohol-induced blackouts. Drug Alcohol Depend. 2013;128(3):243–9. https://doi.org/10.1016/j.drugalcdep.2012.09.003.

    Article  PubMed  Google Scholar 

  42. Franken IH, Luijten M, van der Veen FM, Van Strien JW. Cognitive control in young heavy drinkers: an ERP study. Drug Alcohol Depend. 2017;175:77–83. https://doi.org/10.1016/j.drugalcdep.2017.01.036.

    Article  PubMed  Google Scholar 

  43. Amlung M, Vedelago L, Acker J, Balodis I, MacKillop J. Steep delay discounting and addictive behavior: a meta-analysis of continuous associations. Addiction. 2016;112(1):51–62. https://doi.org/10.1111/add.13535.

    Article  PubMed  Google Scholar 

  44. • Schneider S, Peters J, Peth JM, Büchel C. Parental inconsistency, impulsive choice and neural value representations in healthy adolescents. Transl Psychiatry. 2014;4(4):e382. https://doi.org/10.1038/tp.2014.20. Longitudinal fMRI analysis in 48 13–15-year-olds. Those who reported uncertainty about receiving promised delayed rewards from their parents exhibited steeper delay discounting. Steeper delay discounting was associated with increased alcohol use within 12 months, as well as reduced reward-related activation in the nucleus accumbens and ventromedial prefrontal cortex (key regions in reward processing).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50(1):7–15. https://doi.org/10.1016/0010-0277(94)90018-3.

    Article  CAS  PubMed  Google Scholar 

  46. Xiao L, Bechara A, Gong Q, Huang X, Li X, Xue G, et al. Abnormal affective decision making revealed in adolescent binge-drinkers using a functional magnetic resonance imaging study. Psychol Addict Behav. 2013;27(2):443. https://doi.org/10.1037/a0027892.

    Article  PubMed  Google Scholar 

  47. Sharma L, Markon KE, Clark LA. Toward a theory of distinct types of “impulsive” behaviors: a meta-analysis of self-report and behavioral measures. Psychol Bull. 2014;140(2):374–408. https://doi.org/10.1037/a0034418.

    Article  PubMed  Google Scholar 

  48. Moreno M, Estevez AF, Zaldivar F, Montes JMG, Gutiérrez-Ferre VE, Esteban L, et al. Impulsivity differences in recreational cannabis users and binge drinkers in a university population. Drug Alcohol Depend. 2012;124(3):355–62. https://doi.org/10.1016/j.drugalcdep.2012.02.011.

    Article  PubMed  Google Scholar 

  49. Horn JL, Skinner HA, Wanberg K, Foster FM. Alcohol use questionnaire (ADS). Toronto: Addiction Research Foundation; 1984.

    Google Scholar 

  50. •• Sanchez-Roige S, Baro V, Trick L, Peña-Oliver Y, Stephens DN, Duka T. Exaggerated waiting impulsivity associated with human binge drinking, and high alcohol consumption in mice. Neuropsychopharmacology. 2014;39(13):2919–27. https://doi.org/10.1038/npp.2014.151. Cross sectional analysis of 44 18-25-year-old social binge drinkers and non-binge drinkers examined for trait impulsivity (BIS-11), attention, action and choice impulsivity (Two-Choice Impulsivity Paradigm; TCIP, Five-Choice Serial Reaction Time Task; Sx-5CSRTT, Delay Discounting task). The strongest predictors for high binge-drinking scores were premature responding (Sx-5CSRTT), trait impulsivity (BIS-11), and decision making (TCIP). Binge drinkers showed robust impairments in attention and premature responding when evaluated under increased attentional load, in addition to presenting deficits in decision-making using the TCIP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. •• MacKillop J, Weafer J, Gray JC, Oshri A, Palmer A, de Wit H. The latent structure of impulsivity: impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology. 2016;233(18):3361–70. https://doi.org/10.1007/s00213-016-4372-0. Cross-sectional confirmatory factor analysis in 1,252 young adults with low-substance-use showed that associations between three latent impulsivity domains, including choice (Monetary Choice Questionnaire, DD task), action (GNG, SST, Conner’s Continuous Performance Test) and personality traits (UPPS-P, BIS-11) were low-modest. Total alcohol-use scores were significantly associated with choice and trait impulsivity only.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Saunders JB, Aasland OG, Babor TF, De la Fuente JR, Grant M. Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction. 1993;88(6):791–804.

    Article  CAS  PubMed  Google Scholar 

  53. Henges AL, Marczinski CA. Impulsivity and alcohol consumption in young social drinkers. Addict Behav. 2012;37(2):217–20. https://doi.org/10.1016/j.addbeh.2011.09.013.

    Article  PubMed  Google Scholar 

  54. Fernie G, Peeters M, Gullo MJ, Christiansen P, Cole JC, Sumnall H, et al. Multiple behavioural impulsivity tasks predict prospective alcohol involvement in adolescents. Addiction. 2013;108(11):1916–23. https://doi.org/10.1111/add.12283.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci. 2004;1021(1):77–85. https://doi.org/10.1196/annals.1308.009.

    Article  PubMed  Google Scholar 

  56. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004;101(21):8174–9. https://doi.org/10.1073/pnas.0402680101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jacobus J, Tapert SF. Neurotoxic effects of alcohol in adolescence. Annu Rev Clin Psychol. 2013;9:703–21. https://doi.org/10.1146/annurev–clinpsy–050212–185610.

    Article  PubMed  Google Scholar 

  58. Miller EM, Shankar MU, Knutson B, McClure SM. Dissociating motivation from reward in human striatal activity. J Cogn Neurosci. 2014;26(5):1075–84. https://doi.org/10.1162/jocn_a_00535.

    Article  PubMed  Google Scholar 

  59. Galvan A, Hare TA, Parra CE, Penn J, Voss H, Glover G, et al. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci. 2006;26(25):6885–92. https://doi.org/10.1523/JNEUROSCI.1062-06.2006.

    Article  CAS  PubMed  Google Scholar 

  60. Van Leijenhorst L, Zanolie K, Van Meel CS, Westenberg PM, Rombouts SA, Crone EA. What motivates the adolescent? Brain regions mediating reward sensitivity across adolescence. Cereb Cortex. 2010;20(1):61–9. https://doi.org/10.1093/cercor/bhp078.

    Article  PubMed  Google Scholar 

  61. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5(6):483–94. https://doi.org/10.1038/nrn1406.

    Article  CAS  PubMed  Google Scholar 

  62. Ivory NJ, Kambouropoulos N, Staiger PK. Cue reward salience and alcohol cue reactivity. Personal Individ Differ. 2014;69:217–22. https://doi.org/10.1016/j.paid.2014.06.005.

    Article  Google Scholar 

  63. Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB. Preference for immediate over delayed rewards is associated with magnitude of ventral striatal activity. J Neurosci. 2006;26(51):13213–7. https://doi.org/10.1523/JNEUROSCI.3446-06.2006.

    Article  CAS  PubMed  Google Scholar 

  64. Torrubia R, Avila C, Moltó J, Caseras X. The sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personal Individ Differ. 2001;31(6):837–62. https://doi.org/10.1016/S0191-8869(00)00183-5.

    Article  Google Scholar 

  65. Gullo MJ, Dawe S. Impulsivity and adolescent substance use: rashly dismissed as “all-bad”? Neurosci Biobehav Rev. 2008;32(8):1507–18. https://doi.org/10.1016/j.neubiorev.2008.06.003.

    Article  PubMed  Google Scholar 

  66. van Hemel-Ruiter ME, de Jong PJ, Ostafin BD, Wiers RW. Reward sensitivity, attentional bias, and executive control in early adolescent alcohol use. Addict Behav. 2015;40:84–90. https://doi.org/10.1016/j.addbeh.2014.09.004.

    Article  PubMed  Google Scholar 

  67. MacLeod C, Mathews A, Tata P. Attentional bias in emotional disorders. J Abnorm Psychol. 1986;95(1):15–20. https://doi.org/10.1037/0021-843X.95.1.15.

    Article  CAS  PubMed  Google Scholar 

  68. Lyvers M, Duff H, Basch V, Edwards MS. Rash impulsiveness and reward sensitivity in relation to risky drinking by university students: potential roles of frontal systems. J Addict Behav. 2012;37(8):940–6. https://doi.org/10.1016/j.addbeh.2012.03.028.

    Article  Google Scholar 

  69. Grace J, Malloy PF Frontal systems behavior scale: professional manual Lutz, FL: Psychological Assessment Resources, Incorporated; 2001.

  70. Wrase J, Schlagenhauf F, Kienast T, Wüstenberg T, Bermpohl F, Kahnt T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. NeuroImage. 2007;35(2):787–94. https://doi.org/10.1016/j.neuroimage.2006.11.043.

    Article  PubMed  Google Scholar 

  71. Luijten M, Schellekens AF, Kühn S, Machielse MW, Sescousse G. Disruption of reward processing in addiction: an image-based meta-analysis of functional magnetic resonance imaging studies. JAMA Psychiat. 2017;74(4):387–98. https://doi.org/10.1001/jamapsychiatry.2016.3084.

    Article  Google Scholar 

  72. Peters J, Bromberg U, Schneider S, Brassen S, Menz M, Banaschewski T, et al. Lower ventral striatal activation during reward anticipation in adolescent smokers. Am J Psychiatry. 2011;168(5):540–9. https://doi.org/10.1176/appi.ajp.2010.10071024.

    Article  PubMed  Google Scholar 

  73. Nees F, Tzschoppe J, Patrick CJ, Vollstädt-Klein S, Steiner S, Poustka L, et al. Determinants of early alcohol use in healthy adolescents: the differential contribution of neuroimaging and psychological factors. Neuropsychopharmacology. 2012;37(4):986–95. https://doi.org/10.1038/npp.2011.282.

    Article  PubMed  Google Scholar 

  74. Alati R, Baker P, Betts KS, Connor JP, Little K, Sanson A, et al. The role of parental alcohol use, parental discipline and antisocial behaviour on adolescent drinking trajectories. Drug Alcohol Depend. 2014;134:178–84. https://doi.org/10.1016/j.drugalcdep.2013.09.030.

    Article  CAS  PubMed  Google Scholar 

  75. Weiland BJ, Welsh RC, Yau WYW, Zucker RA, Zubieta JK, Heitzeg MM. Accumbens functional connectivity during reward mediates sensation-seeking and alcohol use in high-risk youth. Drug Alcohol Depend. 2013;128(1):130–9. https://doi.org/10.1016/j.drugalcdep.2012.08.019.

    Article  PubMed  Google Scholar 

  76. Blakemore SJ, Burnett S, Dahl RE. The role of puberty in the developing adolescent brain. Hum Brain Mapp. 2010;31(6):926–33. https://doi.org/10.1002/hbm.21052.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kokotailo PK. Alcohol use by youth and adolescents: a pediatric concern. Pediatrics. 2010;125:1078–87. https://doi.org/10.1542/peds.2010-0438.

    Article  PubMed  Google Scholar 

  78. • Boecker-Schlier R, Holz NE, Hohm E, Zohsel K, Blomeyer D, Buchmann AF, et al. Association between pubertal stage at first drink and neural reward processing in early adulthood. Addict Biol. 2016; https://doi.org/10.1111/adb.12413. This study collected EEG-fMRI during a MID task from healthy young adults. Individuals with first alcohol intake during puberty had reduced frontal cortex activity and increased preparatory EEG activity during reward anticipation. An earlier onset age was also associated with alcohol-related problems during early adulthood.

  79. Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C, et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry. 2010;15(12):1128–39. https://doi.org/10.1038/mp.2010.4.

    Article  CAS  PubMed  Google Scholar 

  80. • Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, et al. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature. 2014;512(7513):185–9. https://doi.org/10.1038/nature13402. A 2-year prospective study of impulsive action found that self-report personality traits of impulsivity on SURPS and TCI-R, and higher delay discounting (the tendency to devalue future rewards) classified current but not future, binge-drinkers. In a cross-sectional analysis, 14-year-old binge-drinkers (≥3 lifetime binges leading to drunkenness by age 14), compared to non-binge-drinking controls (≤2 lifetime alcohol experiences aged ≤16), had increased activity in the postcentral gyri bilaterally during inhibitory errors on SST, and in the bilateral precuneus during successful response inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gillan CM, Daw ND. Taking psychiatry research online. Neuron. 2016;91(1):19–23. https://doi.org/10.1016/j.neuron.2016.06.002.

    Article  CAS  PubMed  Google Scholar 

  82. Kieling C, Baker-Henningham H, Belfer M, Conti G, Ertem I, Omigbodun O, et al. Child and adolescent mental health worldwide: evidence for action. Lancet. 2011;378(9801):1515–25. https://doi.org/10.1016/S0140-6736(11)60827-1.

    Article  PubMed  Google Scholar 

  83. Conrod PJ. Personality-targeted interventions for substance use and misuse. Curr Addict Rep. 2016;3(4):426–36. https://doi.org/10.1007/s40429-016-0127-6.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gillan CM, Whelan R. What big data can do for treatment in psychiatry. Curr Opin Behav Sci. 2017;18:34–42. https://doi.org/10.1016/j.cobeha.2017.07.003.

    Article  Google Scholar 

  85. Brett EI, Leffingwell TR, Leavens EL. Trait mindfulness and protective strategies for alcohol use: implications for college student drinking. Addict Behav. 2017;73:16–21. https://doi.org/10.1016/j.addbeh.2017.04.01.

    Article  PubMed  Google Scholar 

  86. Peters JR, Erisman SM, Upton BT, Baer RA, Roemer L. A preliminary investigation of the relationships between dispositional mindfulness and impulsivity. Mindfulness. 2011;2(4):228–35. https://doi.org/10.1007/s12671-011-0065-2.

    Article  Google Scholar 

  87. Diamond A. Activities and programs that improve children’s executive functions. Curr Dir Psychol Sci. 2012;21(5):335–41. https://doi.org/10.1177/0963721412453722.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kalinowski A, Humphreys K. Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction. 2016;111(7):1293–8.

    Article  PubMed  Google Scholar 

  89. Courtney KE, Polich J. Binge drinking in young adults: Data, definitions, and determinants. Psychol Bull. 2009;135(1):142-156. https://doi.org/10.1037/a0014414.

  90. Pearson MR, Kirouac M, Witkiewitz K. We still question the utility and validity of the binge/heavy drinking criterion. Addiction. 2016;111(10):1733–4. https://doi.org/10.1111/add.13384.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Havard A. Questions about the validity of the binge or heavy drinking criterion have implications for more than just treatment evaluation. Addiction. 2016;111(10):1731–2. https://doi.org/10.1111/add.13294.

    Article  PubMed  Google Scholar 

  92. Kuntsche E, Rossow I, Simons-Morton B, Bogt TT, Kokkevi A, Godeau E. Not early drinking but early drunkenness is a risk factor for problem behaviors among adolescents from 38 European and North American countries. Alcohol Clin Exp Res. 2013;37(2):308–14. https://doi.org/10.1111/j.1530-0277.2012.01895.x.

    Article  PubMed  Google Scholar 

Download references

Funding

LOH is supported by an Irish Research Council Post-Graduate Scholarship (GOIPG/2016/1635). MB is supported by an Irish Research Council Postdoctoral Fellowship (GOIPD/2016/617). RW received funding from Science Foundation Ireland (16/ERCD/3797) and The European Foundation for Alcohol Research (ERAB; 14,127/205512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Whelan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Adolescent/Young Adult Addiction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno Padilla, M., O’Halloran, L., Bennett, M. et al. Impulsivity and Reward Processing Endophenotypes in Youth Alcohol Misuse. Curr Addict Rep 4, 350–363 (2017). https://doi.org/10.1007/s40429-017-0167-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-017-0167-6

Keywords

Navigation