Skip to main content
Log in

Spatial and widely targeted metabolomics and anatomical analysis reveal the mechanisms associated with petal bicolor patterning of two Dendrobium species

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Orchid flowers possess high ornamental value owing to their delicate structure and color. The color patterns are a result of unbalanced pigment distribution among the petal segments, with bicolor being the most common and important for pollination. However, little is known about the relationship between petal bicolor patterns and metabolites and vein structure. Here, we focused on Dendrobium nobile Lindl., with pigmentation mainly at the tip of the flower petal, and D. anosmum ‘A Touch of Class’ Lindl, with pigmentation along the entire petal edge. We combined spatial and widely targeted metabolomics with venation anatomical analysis to identify metabolite and structural differences between the two flower bicolor patterns. In our study, we discovered that the concentration of energy-related substances, such as sugars, did not exhibit significant variance across different color regions of the flower. However, defensive metabolites like alkaloids, phenolic acids, and polyamines were found to be more concentrated in areas with more vibrant pigmentation. Specifically, in D. nobile, a higher accumulation of these metabolites was observed in the vein regions, as identified through spatial metabolic analysis. The study also revealed that different vein types had distinct distribution patterns, yet no significant difference was observed in the density of longitudinal and transverse veins between the two examined species. Notably, D. nobile showed a significantly higher density of open veins in the distal part (pigmented part) of the petal compared to the proximal part. In contrast, D. anosmum 'A Touch of Class' exhibited no significant difference in open vein density between these two regions. Our findings contribute to a deeper understanding of color patterning in orchid flowers and provide a theoretical foundation for the breeding of Dendrobium species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are available in the supplementary materials section.

References

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol S 40:311–331

    Article  Google Scholar 

  • Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S (2016) Polyamines in pollen: from microsporogenesis to fertilization. Front Plant Sci 7:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Anke S, Gonde D, Kaltenegger E, Haensch R, Theuring C, Ober D (2008) Pyrrolizidine alkaloid biosynthesis in Phalaenopsis orchids: developmental expression of alkaloid-specific homospermidine synthase in root tips and young flower buds. Plant Physiol 148:751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieleski RL (1993) Fructan hydrolysis drives petal expansion in the ephemeral daylily flower. Plant Physiol 103:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blonder B, Both S, Jodra M, Xu H, Fricker M, Matos IS, Majalap N, Burslem DFRP, Teh YA, Malhi Y (2020) Linking functional traits to multiscale statistics of leaf venation networks. New Phytol 228:1796–1810

    Article  PubMed  Google Scholar 

  • Boaventura MG, Villamil N, Teixido AL, Tito R, Vasconcelos HL, Silveira FAO, Cornelissen T (2022) Revisiting florivory: an integrative review and global patterns of a neglected interaction. New Phytol 233:132–144

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics(1 WOA ). Plant Physiol 144:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  • Campbell SA (2015) Ecological mechanisms for the coevolution of mating systems and defence. New Phytol 205:1047–1053

    Article  PubMed  Google Scholar 

  • Carins Murphy MR, Jordan GJ, Brodribb TJ (2016) Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Ann Bot 118:1127–1138

    Article  PubMed  PubMed Central  Google Scholar 

  • Caruso CM, Eisen KE, Martin RA, Sletvold N (2019) A meta-analysis of the agents of selection on floral traits. Evolution 73:4–14

    Article  PubMed  Google Scholar 

  • Cozzolino S, Widmer A (2005) Orchid diversity: An evolutionary consequence of deception? Trends Ecol Evol 20:487–494

    Article  PubMed  Google Scholar 

  • Dellinger AS (2020) Pollination syndromes in the 21(st)century: Where do we stand and where may we go? New Phytol 228:1193–1213

    Article  PubMed  Google Scholar 

  • Dussourd DE (2017) Behavioral sabotage of plant defenses by insect folivores. Annu Rev Entomol 62:15–34

    Article  CAS  PubMed  Google Scholar 

  • Dutkiewicz EP, Su CH, Lee HJ, Hsu CC, Yang YL (2021) Visualizing vinca alkaloids in the petal of Catharanthus roseus using functionalized titanium oxide nanowire substrate for surface-assisted laser desorption/ionization imaging mass spectrometry. Plant J 105:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Falcone Ferreyra ML, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froelich C, Hartmann T, Ober D (2006) Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochemistry 67:1493–1502

    Article  CAS  Google Scholar 

  • Givnish TJ, Pires JC, Graham SW, McPherson MA, Prince LM, Patterson TB, Rai HS, Roalson EH, Evans TM, Hahn WJ, Millam KC, Meerow AW, Molvray M, Kores PJ, Brien HEO, Hall JC, Kress WJ, Sytsma KJ (2005) Repeated evolution of net venation and fleshy fruits among monocots in shaded habitats confirms a priori predictions: evidence from an ndhF phylogeny. Proc R Soc B-Biol Sci 272:1481–1490

    Article  Google Scholar 

  • Hara M, Oki K, Hoshino K, Kuboi T (2003) Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Sci 164:259–265

    Article  CAS  Google Scholar 

  • Hossain MM, Kant R, Pham Thanh V, Winarto B, Zeng S, da Silva JAT (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139

    Article  CAS  Google Scholar 

  • Hsu HF, Chen WH, Shen YH, Hsu WH, Mao WT, Yang CH (2021) Multifunctional evolution of B and AGL6 MADS box genes in orchids. Nat Commun 12:902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua L, He P, Goldstein G, Liu H, Yin D, Zhu S, Ye Q (2020) Linking vein properties to leaf biomechanics across 58 woody species from a subtropical forest. Plant Biol 22:212–220

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Nonaka H, Furumai T, Igarashi Y (2005) Cremastrine, a pyrrolizidine alkaloid from Cremastra appendiculata. J Nat Prod 68:572–573

    Article  CAS  PubMed  Google Scholar 

  • Iwashina T (2015) Contribution to flower colors of flavonoids including anthocyanins: a review. Nat Prod Commun 10:1934578X1501000335

    CAS  Google Scholar 

  • Jacobsen DJ, Raguso RA (2018) Lingering effects of herbivory and plant defenses on pollinators. Curr Biol 28:R1164–R1169

    Article  CAS  PubMed  Google Scholar 

  • Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G, Park YI (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiol 154:1514–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo SS, Kim YB, Lee DI (2010) Antimicrobial and antioxidant properties of secondary metabolites from white rose flower. Plant Pathol J 26:57–62

    Article  CAS  Google Scholar 

  • Kandil MM, El-Saady MB, Mona HM, Afaf MH, Iman ME (2011) Effect of putrescine and uniconazole treatments on flower characters and photosynthetic pigments of Chrysanthemum indicum L. plant. J Am Sci 7:399–408

    Google Scholar 

  • Kaspar S, Peukert M, Svatos A, Matros A, Mock HP (2011) MALDI-imaging mass spectrometry—an emerging technique in plant biology. Proteomics 11:1840–1850

    Article  CAS  PubMed  Google Scholar 

  • Kawabata S, Kusuhara Y, Li YH, Sakiyama R (1999) The regulation of anthocyanin biosynthesis in Eustoma grandiflorum under low light conditions. J Jpn Soc Hortic Sci 68:519–526

    Article  CAS  Google Scholar 

  • Koseki M, Goto K, Masuta C, Kanazawa A (2005) The star-type color pattern in Petunia hybrida “Red star” flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879–1883

    Article  CAS  PubMed  Google Scholar 

  • LaFountain AM, Yuan YW (2021) Repressors of anthocyanin biosynthesis. New Phytol 231:933–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XQ, Li XZ, Wang ZX, Zhu CG, Ge QB (2008) Changes of some physiological indices in petals during blossom of cerasus humilis and cerasus glandulosa. J Anhui Agri Sci 36:1760–1762

    CAS  Google Scholar 

  • Li D, Gaquerel E (2021) Next-generation mass spectrometry metabolomics revives the functional analysis of plant metabolic diversity. Annu Rev Plant Biol 72:867–891

    Article  CAS  PubMed  Google Scholar 

  • Li B, Neumann EK, Ge J, Gao W, Yang H, Li P, Sweedler JV (2018) Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant Cell Environ 41:2693–2703

    Article  CAS  PubMed  Google Scholar 

  • Li JW, Zhou Y, Zhang ZB, Cui XQ, Li HY, Ou MJ, Cao KF, Zhang SB (2022) Complementary water and nutrient utilization of perianth structural units help maintain long floral lifespan in Dendrobium. J Exp Bot 74:1123–1139

    Article  PubMed Central  Google Scholar 

  • Mahgoub MH, El-Aziz NGA, Mazhar AMA (2011) Response of Dahlia pinnata L. plant to foliar spray with putrescine and thiamine on growth, flowering and photosynthetic pigments. AEJAES 10:769–775

    CAS  Google Scholar 

  • McKown AD, Cochard H, Sack L (2010) Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution. Am Nat 175:447–460

    Article  PubMed  Google Scholar 

  • Minakuchi S, Ichimura K, Nakayama M, Hisamatsu T, Koshioka M (2008) Effects of high-sucrose concentration treatments on petal color pigmentation and concentrations of sugars and anthocyanins in petals of bud cut carnations. Hortic Res 7:277–281

    Article  CAS  Google Scholar 

  • Moglia A, Lanteri S, Comino C, Hill L, Knevitt D, Cagliero C, Rubiolo P, Bornemann S, Martin C (2014) Dual catalytic activity of hydroxycinnamoyl-coenzyme a quinate transferase from tomato allows it to moonlight in the synthesis of both mono- and dicaffeoylquinic acids. Plant Physiol 166:1777–1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondragon-Palomino M, Theissen G (2008) MADS about the evolution of orchid flowers. Trends Plant Sci 13:51–59

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Hoshino A (2018) Recent advances in flower color variation and patterning of Japanese morning glory and petunia. Breed Sci 68:128–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita S, Torii Y, Harada T, Kawarada M, Onodera R, Satoh S (2011) Cloning and characterization of a cDNA encoding sucrose synthase associated with flower opening through early senescence in carnation (Dianthus caryophyllus L.). J Jpn Soc Hortic Sci 80:358–364

    Article  CAS  Google Scholar 

  • Morita Y, Saito R, Ban Y, Tanikawa N, Kuchitsu K, Ando T, Yoshikawa M, Habu Y, Ozeki Y, Nakayama M (2012) Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. Plant J 70:739–749

    Article  CAS  PubMed  Google Scholar 

  • Nadernejad N, Ahmadimoghadam A, Hossyinifard J, Poorseyedi S (2013) Effect of different rootstocks on PAL activity and phenolic compounds in flowers, leaves, hulls and kernels of three pistachio (Pistacia vera L.) cultivars. Trees-Struct Funct 27:1681–1689

    Article  CAS  Google Scholar 

  • Nandy S, Das T, Tudu CK, Mishra T, Ghorai M, Gadekar VS, Anand U, Kumar M, Behl T, Shaikh NK, Jha NK, Shekhawat MS, Pandey DK, Dwivedi P, Radha DA (2022) Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Appl Microbiol Biotechnol 106:905–929

    Article  CAS  PubMed  Google Scholar 

  • Neta-Sharir I, Shoseyov O, Weiss D (2000) Sugars enhance the expression of gibberellin-induced genes in developing petunia flowers. Physiol Plant 109:196–202

    Article  CAS  Google Scholar 

  • Ohno S, Hori W, Hosokawa M, Tatsuzawa F, Doi M (2016) Petal color is associated with leaf flavonoid accumulation in a labile bicolor flowering dahlia (Dahlia variabilis) “Yuino.” Horticult J 85:177–186

    Article  CAS  Google Scholar 

  • Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Pérez-Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE Jr, Van Bael SA, Warton DI, Wright IJ, Joseph Wright S, Yamashita N (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Prasifka JR, Wallis CM (2019) Concentrations of sunflower phenolics appear insufficient to explain resistance to floret- and seed-feeding caterpillars. Arthropod-Plant Interact 13:915–921

    Article  Google Scholar 

  • Ramirez-Barahona S, Sauquet H, Magallon S (2020) The delayed and geographically heterogeneous diversification of flowering plant families. Nat Ecol Evol 4:1232

    Article  PubMed  Google Scholar 

  • Roddy AB, Guilliams CM, Lilittham T, Farmer J, Wormser V, Trang P, Fine PVA, Field TS, Dawson TE (2013) Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny. J Exp Bot 64:4081–4088

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:983–1000

    Article  PubMed  Google Scholar 

  • Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012) Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun 3:837

    Article  PubMed  Google Scholar 

  • Saigo T, Wang T, Watanabe M, Tohge T (2020) Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr Opin Plant Biol 55:93–99

    Article  CAS  PubMed  Google Scholar 

  • Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stegemann T, Kruse LH, Brütt M, Ober D (2019) Specific distribution of pyrrolizidine alkaloids in floral parts of comfrey (Symphytum officinale) and its implications for flower ecology. J Chem Ecol 45:128–135

    Article  CAS  PubMed  Google Scholar 

  • Trivellini A, Ferrante A, Vernieri P, Carmassi G, Serra G (2011) Spatial and temporal distribution of mineral nutrients and sugars throughout the lifespan of Hibiscus rosa-sinensis L. flower. Cent Eur J Biol 6:365–375

    CAS  Google Scholar 

  • Wang H, Wang C, Fan W, Yang J, Appelhagen I, Wu Y, Zhang P (2018) A novel glycosyltransferase catalyses the transfer of glucose to glucosylated anthocyanins in purple sweet potato. J Exp Bot 69:5444–5459

    PubMed  PubMed Central  Google Scholar 

  • Wei W, Wu H, Li X, Wei X, Lu W, Zheng X (2019) Diversity, daily activity patterns, and pollination effectiveness of the insects visiting Camellia osmantha, C. vietnamensis and C. oleifera in South China. InSects 10:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu W, Jahan MS, Shu S, Sun J, Guo S (2022) Characterization of polyamine oxidase genes in cucumber and roles of CsPAO3 in response to salt stress. Environ Exp Bot 194:104696

    Article  CAS  Google Scholar 

  • Xiao L, Labandeira C, Dilcher D, Ren D (2021) Florivory of early Cretaceous flowers by functionally diverse insects: implications for early angiosperm pollination. Proc R Soc B-Biol Sci 288:20210320

    Article  Google Scholar 

  • Yamagishi M (2013) How genes paint lily flowers: regulation of colouration and pigmentation patterning. Sci Hortic-Amsterdam 163:27–36

    Article  CAS  Google Scholar 

  • Zhang C, Chen G, Li Y (2012) Physiological and biochemical mechanism of flower color variation during flowering season in Yulania soulangeana. Acta Botan Boreali-Occiden Sin 32:716–721

    CAS  Google Scholar 

  • Zhang FP, Carins Murphy MR, Cardoso AA, Jordan GJ, Brodribb TJ (2018) Similar geometric rules govern the distribution of veins and stomata in petals, sepals and leaves. New Phytol 219:1224–1234

    Article  CAS  PubMed  Google Scholar 

  • Zhang FP, Feng JQ, Huang JL, Huang W, Fu XW, Hu H, Zhang SB (2021) Floral longevity of Paphiopedilum and Cypripedium is associated with floral morphology. Front Plant Sci 12:637236

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Tian L, Liu H, Pan Q, Zhan J, Huang W (2009) Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regul 58:251–260

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32260259, 31901092), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (2021GXNSFBA075059, 2020GXNSFAA297090), and the Guangxi Key Research and Development Program (Guike AB21220056).

Author information

Authors and Affiliations

Authors

Contributions

JWL and ZBZ designed the research, conducted the experiments, analyzed the data, and wrote the manuscript. MJO, HYL, and HL conducted the experiments, analyzed the data, and wrote the manuscript. ZHD conducted the experiments. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Zi-Bin Zhang or Jia-Wei Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1903 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, MJ., Li, HY., Liang, H. et al. Spatial and widely targeted metabolomics and anatomical analysis reveal the mechanisms associated with petal bicolor patterning of two Dendrobium species. Braz. J. Bot (2024). https://doi.org/10.1007/s40415-024-01002-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40415-024-01002-1

Keywords

Navigation