Skip to main content

Advertisement

Log in

Comparative assessment of leaf photosynthetic traits for improved carbon dioxide fixation in selected tree species of Pachamalai hills

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Forest plays a major role in the carbon dioxide (CO2) sequestration process, understanding that the CO2 sequestration capacity of individual tree species is essential for the effective management of atmospheric CO2. In this regard, 50 tree species belonging to 23 families from Pachamalai hills were taken. After the initial screening, 24 tree species were subjected to leaf anatomy, morphology, physiology, and biochemical studies. The anatomical study revealed that A. heterophyllus, F. benghalensis, A. eleagnoidea, A. occidentale, F. religiosa, and M. peltata have high leaf thickness, stomatal density, and stomatal pore index. The morphological study showed that T. grandis, M. peltata, and G. arborea have more leaf area index, specific leaf area, and petiole length. The physiological study suggested maximum CO2 assimilation rate, stomatal conductance, and intercellular CO2 concentration in leaves of M. peltata, F. religiosa, and M. indica. The biochemical characteristics of leaves revealed that F. religiosa, P. marsupium, and S. album possessed high content of total chlorophyll pigments. Further, based on the parameters 15 tree species were shortlisted for the photosynthetic enzyme (rubisco, phosphoenolpyruvate carboxylase, and carbonic anhydrase) activity in leaves. The enzyme activity was higher in Mpeltata, Mangifera indica, F. benghalensis, and F. religiosa; further, RT-qPCR analysis of genes involved in CO2 fixation and photosynthesis confirmed higher expression in M. peltata, and Mangifera indica. The study highlighted the importance of Macaranga peltata, Mangifera indica, Ficus benghalensis, and Ficus religiosa in photosynthetic CO2 assimilation. These findings can be incorporated into atmospheric CO2 maintenance programs toward climate change mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris Plant Physiol 24:1–15

    CAS  PubMed  Google Scholar 

  • Arntz MA, Delph LF (2001) Pattern and process: evidence for the evolution of photosynthetic traits in natural populations. Oecologia 127:455–467

    Article  PubMed  Google Scholar 

  • Berry J, Wolf A, Campbell JE, Baker I, Blake N, Blake D, Denning AS, Kawa SR, Montzka SA, Seibt U, Stimler K, Yakir D, Zhu Z (2013) A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J Geophys Res Biogeosci 118:842–852

    Article  CAS  Google Scholar 

  • Bhaskar A, Samant LR (2012) Traditional medication of Pachamalai hills, Tamilnadu. India Glob J Pharmacol 6:47–51

    Google Scholar 

  • Brodribb TJ, Jordan GJ (2011) Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytol 192:437–448

    Article  PubMed  Google Scholar 

  • Brown DW (1994) The causes of tropical deforestation: The economic and statistical analysis of factors giving rise to the loss of the tropical forests. UCL Press Ltd, London

    Google Scholar 

  • Chandra A, Bhatt RK (1998) Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica 35:255–258

    Article  CAS  Google Scholar 

  • Chow PS, Landhäusser SM (2004) A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol 24:1129–1136

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WI (1996) Chlorophyll and carotenoid composition in leaves of Euonymus kiautschovicus acclimated to different degrees of light stress in the field. Funct Plant Biol 23:649–659

    Article  CAS  Google Scholar 

  • Dias GDMG, Rodrigues Soares JD, Pasqual M, Lara Silva RA, Rodrigues LC, Pereira FJ, de Castro EM (2014) Photosynthesis and leaf anatomy of Anthurium’cv. Rubi plantlets cultured “in vitro” under different silicon (Si) concentrations. Aust J Crop Sci 8:1160–1167

    Google Scholar 

  • Dorogovtsev SN, Ferreira AL, Goltsev AV, Mendes JFF (2010) Zero Pearson coefficient for strongly correlated growing trees. Phys Rev E 81:031135

    Article  CAS  Google Scholar 

  • Ellsworth D, Reich P (1993) Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia 96:169–178

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006a) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martinez-Cañellas S, Medrano H (2006b) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106:10343–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell Environ 32:1737–1748

    Article  PubMed  Google Scholar 

  • Galmes J, Ochogavia JM, Gago J, Roldán EJ, Cifre J, Conesa MÀ (2013) Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ 36:920–935

    Article  CAS  PubMed  Google Scholar 

  • Geetha Rani M (2010) Medicinal plants viz a viz indigenous knowledge among the tribals of Pachamalai Hills. Indian J Tradit Knowl 9:209–215

    Google Scholar 

  • Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106:131–160

    Article  Google Scholar 

  • Govindaraju M, Ganeshkumar RS, Muthukumaran VR, Visvanathan P (2012) Identification and evaluation of air-pollution-tolerant plants around lignite-based thermal power station for greenbelt development. ESPR 19:1210–1223

    CAS  PubMed  Google Scholar 

  • Gulias J, Flexas J, Mus M, Cifre J, Lefi E, Medrano H (2003) Relationship between maximum leaf photosynthesis, nitrogen content and specific leaf area in Balearic Endemic and Non-endemic Mediterranean Species. Ann Bot 92:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Henson I, Jensen C, Turner N (1989) Leaf gas exchange and water relations of lupins and wheat. I. shoot responses to soil water deficits. Funct Plant Biol 16:401–413

    Article  Google Scholar 

  • Hodgson JG, Sharafi M, Jalili A et al (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot 105:573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Company, London

    Google Scholar 

  • Kacholi DS (2014) Analysis of structure and diversity of the Kilengwe Forest in the Morogoro Region, Tanzania. Int J Biodivers

  • Kanagaraj S, Selvaraj M, Das Kangabam R, Munisamy G (2017) Assessment of tree species diversity and its distribution pattern in Pachamalai Reserve Forest, Tamil Nadu. J Sustain for 36:32–46

    Article  Google Scholar 

  • Kenzo T, Ichie T, Yoneda R et al (2004) Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest. Tree Physiol 24:1187–1192

    Article  PubMed  Google Scholar 

  • Lazova GN, Naidenova T, Velinova K (2004) Carbonic anhydrase activity and photosynthetic rate in the tree species Paulownia tomentosa Steud. Effect of dimethylsulfoxide treatment and zinc accumulation in leaves. J Plant Physiol 161:295–301

    Article  CAS  PubMed  Google Scholar 

  • Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, Mitchell A, Bellasio C, Green A, Bouyer D, Schnittger A (2017) Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. Plant J 92:981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler H, Babani F, Langsdorf G (2007) Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth Res 93:235–244

    Article  CAS  PubMed  Google Scholar 

  • Lilley RM, Walker DA (1974) An improved spectrophotometric assay for ribulosebisphosphate carboxylase. Biochim Biophys Acta 358:226–229

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough N, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Boil Chem 193:256–275

    Article  Google Scholar 

  • Lu ZX, Gaudet D, Puchalski B, Despins T, Frick M, Laroche A (2005) Inducers of resistance reduce common bunt infection in wheat seedlings while differentially regulating defence-gene expression. Physiol Mol Plant Pathol 67:138–148

    Article  CAS  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press

  • McCready RM, Jack G, Vernon S, Owens HS (1950) Determination of starch and amylose in vegetables. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  • Metz B, Intergovernmental Panel on Climate Change (eds) (2007) Climate change 2007: mitigation of climate change: contribution of Working Group III to the Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge ; New York

  • Meyer CR, Rustin P, Wedding RT (1988) A simple and accurate spectrophotometric assay for phosphoenolpyruvate carboxylase activity 1. Plant Physiol 86:325–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mielke MS, de Almeida AA, Gomes FP, Aguilar MA, Mangabeira PA (2003) Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. Environ Exp Bot 50:221–231

    Article  CAS  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Gri A, Jung TY, Kram T, La Rovere EL (2000) IPCC Special Report on Emissions Scenarios

  • Nguyen VL (2012) Estimation of biomass for calculating carbon storage and CO2 sequestration using remote sensing technology in Yok Don National Park, Central Highlands of Vietnam. J Viet Env 3:14–18

    Article  Google Scholar 

  • Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 38:535–552

    Article  PubMed  Google Scholar 

  • Oberbauer SF, Strain BR (1986) Effects of canopy position and irradiance on the leaf physiology and morphology of Pentaclethra macroloba (Mimosaceae). Am J Bot 73:409–416

    Article  Google Scholar 

  • Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57–63

    Article  CAS  Google Scholar 

  • Parkhurst DF (1994) Diffusion of CO2 and other gases inside leaves. New Phytol 126:449–479

    Article  CAS  PubMed  Google Scholar 

  • Pearcy RW (1987) Photosynthetic gas exchange responses of australian tropical forest trees in canopy, gap and understory micro-environments. Funct Ecol 1:169–178

    Article  Google Scholar 

  • Peng L, Yamamoto H, Shikanai T (2011) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim Biophys Acta Bioenerg 1807:945–953

    Article  CAS  Google Scholar 

  • Pomázi I (2012) OECD environmental outlook to 2050: the consequences of inaction. Hungarian Geogr Bull 61:343–345

    Google Scholar 

  • Poorter L, Oberbauer SF, Clark DB (1995) Leaf optical properties along a vertical gradient in a tropical rain forest canopy in Costa rica. Am J Bot 82:1257–1263

    Article  Google Scholar 

  • Poorter L, Kwant R, Hernández R, Medina E, Werger MJ (2000) Leaf optical properties in Venezuelan cloud forest trees. Tree Physiol 20:519–526

    Article  CAS  PubMed  Google Scholar 

  • Popma J, Bongers F, Werger MJA (1992) Gap-dependence and leaf characteristics of trees in a tropical lowland rain forest in Mexico. Oikos 63:207–214

    Article  Google Scholar 

  • Prasad BJ, Rao DN (1982) Relative sensitivity of a leguminous and a cereal crop to sulphur dioxide pollution. Environ Pollut A Ecology Biol 29:57–70

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol Monogr 62:365–392

    Article  Google Scholar 

  • Royer DL (2001) Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynol 114:1–28

    Article  PubMed  Google Scholar 

  • Rubin E (2006) Summary of the IPCC special report on carbon dioxide capture and storage. Proceedings of International workshop on CO2 geological storage, Japan, pp 35–41

  • Ruosteenoja K, Carter TR, Jylha K, Tuomenvirta H (2003) Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios. Finnish Environment Institute, Helsinki

  • Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

    Article  Google Scholar 

  • Schuepp PH (1993) Tansley Review No. 59. Leaf boundary layers. New Phytol 125:477–507

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Savitch LV, Butz ND (1991) Photometric method for routine determination of kcat and carbamylation of rubisco. Photosynth Res 28:41–48

    Article  CAS  PubMed  Google Scholar 

  • Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf form and photosynthesis. Bioscience 47:785–793

    Article  Google Scholar 

  • Suganthi K, Sarojini Devi B, Suganthi P, Govindaraju M (2017a) Evaluation of potential storage of organic carbon in soil and trees: a case study. Int J Ecol Dev 32:29–38

    Google Scholar 

  • Suganthi K, Rajiv Das K, Selvaraj M, Kurinji S, Goel M, Govindaraju M (2017) Assessment of altitudinal mediated changes of CO2 sequestration by trees at Pachamalai reserve forest, Tamilnadu, India. Carbon Utilization. Springer, Singapore, pp 89–99

    Chapter  Google Scholar 

  • Tagupa C, Lopez AL, Caperida F, Pamunag G, Luzada A (2013) Carbon dioxide sequestration capacity of Tampilisan Forest, Zamboanga del Norte. Philippines IAMURE Int J Plant Ecol 1:1–1

    Google Scholar 

  • Tanaka Y, Sugano SS, Shimada T, Hara-Nishimura I (2013) Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol 198:757–764

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y et al (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • The state of the world’s forests (2020) https://www.fao.org/state-of-forests/en/

  • Tuteja N, Tewari KK (1999) Molecular biology of chloroplast genome. Concepts in photobiology: photosynthesis and photomorphogenesis. Springer, Dordrecht, pp 691–738

    Book  Google Scholar 

  • Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (2000) Land use, land-use change, and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK

    Google Scholar 

  • Yulin LI, Johnson DA, Yongzhong SU, Jianyuan CU, Zhang T (2004) Specific leaf area and leaf dry matter content of plants growing in sand dunes. Bot Bull Acad Sinica 46:127–134

    Google Scholar 

Download references

Acknowledgements

We would like to thank Science and Engineering Research Board (DST-SERB) for their financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohini Sreevathsa or Govindaraju Munisamy.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

40415_2022_855_MOESM1_ESM.xlsx

Table S1 Geographical coordinates of sampling sites at Pachamalai hills. Table S2 Candidate reference genes and characteristics of qRT-PCR primers. Table S3 Target genes and its characteristics of qRT-PCR primers. Table S4 List of identified tree species in the study area. Table S5 Leaf morphological traits at full leaf expansion of the selected tree species. Table S6 Gas exchange rate parameters at full leaf expansion among the selected tree species. Table S7 Relationship between tree leaves anatomy and morphology. Table S8 Relationship between tree leaves anatomy and biochemical properties. Table S9 Relationship between tree leaves physiology and anatomy. Table S10 Relationship between tree leaves physiology and morphology. Table S11 Multiple regression correlation between different leaf characteristics

Fig. S1 Map of sampling locations in the study area

40415_2022_855_MOESM3_ESM.docx

Fig. S2 Photomicrograph images for the transverse cross-section of different tree species leaves at 150 and 500 μm in 40 and 100 X magnification. Fig. S3 Paradermic section of different tree species leaf displaying stomata on the abaxial surface by light micrographs at 150 and 50 μm in 10 and 40 X magnification

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagaraj, S., Rathinam, M., Ramkumar, M.K. et al. Comparative assessment of leaf photosynthetic traits for improved carbon dioxide fixation in selected tree species of Pachamalai hills. Braz. J. Bot 46, 1–14 (2023). https://doi.org/10.1007/s40415-022-00855-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00855-8

Keywords

Navigation