Skip to main content
Log in

A compendium of vivipary in the Cactaceae: new reports, data, and research prospects

  • Reproductive Biology - Review Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

This review examines the historical research progress and areas of vivipary currently investigated in the Cactaceae. Vivipary, a rare attribute, has evolved multiple times in numerous plant lineages; however, a complete understanding of this event is still lacking in the cactus family and plants, in general. This literature search combines the results obtained from scientific sources addressing aspects of vivipary published since 1900 to 2000, with an emphasis from 2000 to 2021. This systematic compendium summarizes findings in various aspects of vivipary, such as the taxonomic and ecological range, offspring survival, and the physiological bases of this phenomenon in the Cactaceae. To date, 77 viviparous taxa circumscribed in subfamilies Pereskioideae and Cactoideae are known, representing approximately 5.4% vivipary at the family level. The taxonomic and geographic occurrence of this facultative reproductive attribute is discussed along with new reports, subsistence of viviparous and non-viviparous progeny, and a framework examining the phylogenetic distribution and putative origin of this generative mode in the family. The portrayal of the geographic distribution of viviparous species highlights the ubiquity of this trait and identifies vivipary hot spots in Cuba, the Brazilian Mata Atlântica, and NW Mexico, emphasizing ideas for cactus conservation. New data dealing with the role of the phytohormones abscisic acid and gibberellic acid in vivipary is examined in conjunction with the thermoregulatory properties of the fleshy viviparous fruits. Research areas deserving further studies are examined and several model species to conduct multidisciplinary research related to cactus vivipary in different areas of the Americas are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Almeida OJG, Paoli AAS, Souza LA, Cota-Sánchez JH (2013) Seedling morphology and development in the epiphytic cactus Epiphyllum phyllanthus (L.) Haw. (Cactaceae: Hylocereeae). J Torrey Bot Soc 140:196–214

    Article  Google Scholar 

  • Almeida OJG, Souza LA, Paoli AAS, Davis AR, Cota-Sánchez JH (2018) Pericarp development in fruit of epiphytic cacti: implications for fruit classification and macro-morphology in the Cactaceae. Botany 96:621–635

    Article  Google Scholar 

  • Anderson EF (2001) The cactus family. Timber Press. Inc., Portland

    Google Scholar 

  • Antonucci NP, Abreu DD, Melo-de-Pinna GF (2011) Vivipary in Alternanthera littoralis var. maritima - first record for the Amaranthaceae. Bot Mar 54:105–108

  • Aragón Gastélum JL (2011) Viviparidad en Echinocactus platyacanthus en el Altiplano Potosino y su posible beneficio para las etapas iniciales de desarrollo. MSc Thesis. Instituto Potosino de Investigación Científica y Tecnológica, AC. San Luis Potosí, Mexico

  • Aragón-Gastélum JL, Reyes-Olivas Á, Sánchez-Soto BH, Casillas-Álvarez P, Flores J (2013) Vivipary in Ferocactus herrerae (Cactaceae) in northern Sinaloa, Mexico. Bradleya 31:44–52

    Article  Google Scholar 

  • Aragón-Gastélum JL, Flores J, Yáñez-Espinosa L, Reyes-Olivas Á, Rodas-Ortiz JP, Robles-Díaz E, González FJ (2017) Advantages of vivipary in Echinocactus platyacanthus, an endemic and protected Mexican cactus species. J Arid Environ 141:56–59

    Article  Google Scholar 

  • Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ (2011) Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc Natl Acad Sci USA 108:8379–8384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacci LF, Goldenberg R, Michelangeli FA (2021) First reports of vivipary in Neotropical Melastomataceae. Int J Plant Sci 182:79–83

    Article  Google Scholar 

  • Bárcenas-Argüello ML, López-Mata L, Terrazas T, García-Moya E (2013) Germinación de tres especies de Cephalocereus (Cactaceae) endémicas del Istmo de Tehuantepec, México. Polibotánica 36:105–116

    Google Scholar 

  • Barrios D, González-Torres LR, García-Beltrán JA (2012) Vivipary in Cuban cacti: a pioneer study in Leptocereus scopulophilus. Bradleya 30:147–150

    Article  Google Scholar 

  • Barrios D, Sánchez JA, Flores J, Jurado E (2020) Seed traits and germination in the Cactaceae family: a review across Americas. Bot Sci 98:417–440

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2019) How much influence does the paternal parent have on seed germination? Seed Sci Res 29:1–11

    Article  CAS  Google Scholar 

  • Batygina TB (2005) Sexual and asexual processes in reproductive systems of flowering plants. Acta Biol Crac Ser Bot 47:51–60

    Google Scholar 

  • Batygina TB, Bragina EA (2009) Viviparity. In: Batygina TB (ed) Embryology of flowering plants: terminology and concepts, vol 3. Reproductive systems. Science Pub, Enfield, pp 19–29

    Google Scholar 

  • Beumer C, Martens P (2013) IUCN and perspectives on biodiversity conservation in a changing world. Biodivers Conserv 22:3105–3120

    Article  Google Scholar 

  • Blackburn DG (1999) Viviparity and oviparity: evolution and reproductive strategies. In: Encyclopedia of reproduction, vol 4. Academic Press, pp 994-1003

  • Boke NH (1963) Anatomy and development of the flower and fruit of Pereskia pititache. Am J Bot 50:843–858

    Article  Google Scholar 

  • Boke NH (1964) The cactus gynoecium: a new interpretation. Am J Bot 51:598–610

    Article  Google Scholar 

  • Braun A (1859) About polyembryony and germination of Coelebogyne. An addendum to the treatise on parthenogenesis in plants. Abh Kon Akad Wiss, pp 109–263. https://www.biodiversitylibrary.org/item/95170#page/1/mode/1up

  • Britton NL, Rose JN (1920) The Cactaceae. Carnegie Institution, Washington

    Google Scholar 

  • Buxbaum F (1968) Endogene Viviparie Bei Neoporteria-Arten. Kuas 19:2–3

    Google Scholar 

  • Caruso CM, Mason CM, Medeiros JS (2020) The evolution of functional traits in plants: is the giant still sleeping? Int J Plant Sci 181:1–8

    Article  Google Scholar 

  • Casillas-Álvarez P, Reyes-Olivas Á, Sánchez-Soto BH, García-Moya E, Lugo-García GA, Soto-Hernández RM (2018) Germinación diferencial asociada con viviparidad facultativa en Stenocereus thurberi (Cactaceae): correlaciones climáticas en poblaciones marginales de Sinaloa, México. Acta Bot Mex 123:51–66

    Article  Google Scholar 

  • Chauhan RS, Bahuguna YM, Nautiyal MC, Cota-Sánchez JH (2018) First account of vivipary in Saussurea lappa (Decne.) Sch. Bip. (Asteraceae). Braz J Bot 41:507–514

    Article  Google Scholar 

  • Chen L, Wang W (2017) Ecophysiological responses of viviparous mangrove Rhizophora stylosa seedlings to simulated sea-level rise. J Coast Res 33:1333–1340

    Article  Google Scholar 

  • Chen K, Zhang Y, Fu X (2019) International research collaboration: an emerging domain of innovation studies? Res Policy 48:149–168

    Article  CAS  Google Scholar 

  • Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and the metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  CAS  PubMed  Google Scholar 

  • Conde FL (1975) Vivipary in Epiphyllum. Cact Succ J (los Angeles) 47:38–39

    Google Scholar 

  • Cota JH (1996) A review of Ferocactus Britton and Rose. In: Yaloff S, Brown R (eds) The taxonomy and ecology of the genus Ferocactus. Termites Press, San Diego, pp 35–80

    Google Scholar 

  • Cota-Sánchez JH (2002) Taxonomy, distribution, rarity status and uses of Canadian cacti. Haseltonia 9:17–25

    Google Scholar 

  • Cota-Sánchez JH (2004) Vivipary in the Cactaceae: its taxonomic occurrence and biological significance. Flora 199:481–490

    Article  Google Scholar 

  • Cota-Sánchez JH (2008) Evolución de cactáceas en la región del Golfo de California, México. In: Flores CLM (ed) Estudios de las islas de Baja California. Universidad Autónoma de Sinaloa, Consejo Nacional de Ciencia y Tecnología, Gobierno de Estado de Sinaloa, Culiacán, pp 67–79

    Google Scholar 

  • Cota-Sánchez JH (2016) Nutritional composition of Prickly Pear (Opuntia ficus-indica) fruit. In: Simons MSJ, Predy VR (eds) Nutritional composition of fruit cultivars. Academic Press, London, pp 691–712

    Chapter  Google Scholar 

  • Cota-Sánchez JH (2018) Precocious germination (vivipary) in tomato: a link to economic loss? Proc Nat Acad Sci India Sect B Biol Sci 88:1443–1451

    Article  Google Scholar 

  • Cota-Sánchez JH, Abreu DD (2007) Vivipary and offspring survival in the epiphytic cactus Epiphyllum phyllanthus (Cactaceae). J Exp Bot 58:3865–3873

    Article  PubMed  CAS  Google Scholar 

  • Cota-Sánchez JH, Bomfim-Patrício M (2010) Seed morphology, polyploidy and the evolutionary history of the epiphytic cactus Rhipsalis baccifera (Cactaceae). Polibotánica 29:107–129

    Google Scholar 

  • Cota-Sánchez JH, Reyes-Olivas A, Sánchez-Soto B (2007) Vivipary in coastal cacti: a potential reproductive strategy in halophytic environments. Am J Bot 94:1577–1581

    Article  PubMed  Google Scholar 

  • Cota-Sánchez JH, Reyes-Olivas A, Abreu DD (2011) Vivipary in the cactus family: a reply to Ortega-Baes’ et al. evaluation of 25 species from northwestern Argentina. J Arid Environ 75:878–880

    Article  Google Scholar 

  • Dalrymple SE, Abeli T (2019) Ex situ seed banks and the IUCN Red List. Nat Plants 5:122–123

    Article  PubMed  Google Scholar 

  • Derouet M (2012) Fleur, graines de cactées de la fleur à la plantule. CactusPro.com. https://www.cactuspro.com/articles/_media/graines_de_cactees:graines-2012-cf.pdf

  • Dintu KP, Sibi CV, Ravichandran P, Satheeshkumar K (2015) Vivipary in Ophiorrhiza mungos L.—a rare phenomenon in angiosperms. Plant Biol 17:294–295

    Article  CAS  PubMed  Google Scholar 

  • Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188

    Article  PubMed  Google Scholar 

  • Elmqvist T, Cox PA (1996) The evolution of vivipary in flowering plants. Oikos 77:3–9

    Article  Google Scholar 

  • Falagas ME, Pitsouni EI, Malietzis GA, Pappas G (2008) Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J 22:338–342

    Article  CAS  PubMed  Google Scholar 

  • Farmer CG (2003) Reproduction: the adaptive significance of endothermy. Am Nat 162:826–840

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth EJ (2000) The ecology and physiology of viviparous and recalcitrant seeds. Annu Rev Ecol Evol Syst 31:107–138

    Article  Google Scholar 

  • Farnsworth EJ, Farrant JM (1998) Reductions in abscisic acid are linked with viviparous reproduction in mangroves. Am J Bot 85:760–769

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth EJ (1997) Evolutionary and ecological physiology of mangrove seedlings: correlates, costs, and consequences of viviparous reproduction. PhD Thesis, Harvard University, Cambridge, MA

  • Farrant JM, Pamenter NW, Cutting JGM, Berjack P (1993) The role of plant growth regulators in the development and germination of the desiccation-sensitive (recalcitrant) seeds of Avicennia marina. Seed Sci Res 3:55–63

    Article  CAS  Google Scholar 

  • Franco FF, Amaral DT, Bonatelli IA, Romeiro-Brito M, Telhe MC, Moraes EM (2022) Evolutionary genetics of cacti: research biases, advances and prospects. Genes 13:452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes Mayo V (2012) Atributos demográficos y biología reproductiva de Coryphantha cornifera y Stenocactus anfractuosus con fines de conservación. PhD Thesis, Instituto de Enseñanza e Investigación en Ciencias Agrícolas. Texcoco, Mexico

  • García-Beltrán JA, Barrios D, Cuza-Pérez A (2017) Heteromorphism in seeds of Leptocereus scopulophilus (Cactaceae) from Pan de Matanzas. Cuba Seed Sci Res 27:311–320

    Article  CAS  Google Scholar 

  • García-Beltrán JA, Barrios D, González-Torres LR, Cuza A, Toledo S (2021) Vivipary in Cuban cacti and an assessment of establishment success in Leptocereus scopulophilus. J Arid Environ 184:104322

    Article  Google Scholar 

  • Goebel KE (1905) Organography in plants. Hafner, New York

    Google Scholar 

  • Goettsch B, Hilton-Taylor C, Cruz-Piñón G, Duffy JP, Frances A, Hernández HM, Inger R, Pollock C, Schipper J, Superina M, Taylor NP (2015) High proportion of cactus species threatened with extinction. Nat Plants 1:15142

    Article  CAS  PubMed  Google Scholar 

  • Guerrero PC, Majure LC, Cornejo-Romero A, Hernández-Hernández T (2019) Phylogenetic relationships and evolutionary trends in the cactus family. J Hered 110:4–21

    Article  PubMed  Google Scholar 

  • Guimarães Marchi MN (2012) Micropropagação e conservação de Discocactus zehntneri, Pilosocereus gounellei e Stephanocereus luetzelburgii, cactos nativos da Chapada Diamantina, Bahia. PhD Thesis, Universidade Estadual de Feira de Santana, Bahia, Brazil

  • Guppy HB (1906) Observations of a naturalist in the Pacific II. Plant dispersal. McMillan & Co., Lim., London

    Google Scholar 

  • Haberlandt G (1893) Eine botanische Tropenreise. W Engelmann, Leipzig

    Google Scholar 

  • Haddaway NR, Collins AM, Coughlin D, Kirk S (2015) The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE 10:e0138237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hemp A (2001) Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro. Part II: Habitat Selection Plant Biol 3:493–523

    Google Scholar 

  • Henkel PA (1979) The concept of viviparity in the plant world. Zh Obshch Biol 40:60–66 ((in Russian))

    Google Scholar 

  • Hernández RM, Sánchez C (2012) Novelties in the fern genus Polystichum (Dryopteridaceae) I. Three New Taxa for Cuba. Willdenowia 42:273–281

    Article  Google Scholar 

  • Hernández-Andrade A, Parra-Gómez L, Ferrer MM, Montañez-Escalante PI, Jiménez-Osornio J (2019) Agrodiversity of Hylocereus undatus in Maya home gardens: management and genetic variability. J Ethnobiol 39:530–548

    Article  Google Scholar 

  • Hernández-Hernández T, Hernández HM, De-Nova JA, Puente R, Eguiarte LE, Magallón S (2011) Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Am J Bot 98:44–61

    Article  PubMed  Google Scholar 

  • Hernández-Hernández T, Brown JW, Schlumpberger BO, Eguiarte LE, Magallón S (2014) Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World succulent biome. New Phytol 202:1382–1397

    Article  PubMed  Google Scholar 

  • Hunt D, Taylor NP, Charles G (2006) The new cactus lexicon atlas of illustrations. International Cactaceae Systematics Group, Milborne Port

    Google Scholar 

  • Irudayaraj V, Manickam VS, Johnson M (2003) Vivipary, a rare and evolutionarily important phenomenon in a rare homosporous fern Grammitis medialis from the Western Ghats, South India. Curr Sci 85:1666–1667

    Google Scholar 

  • IUCN (2021) The IUCN red list of threatened species. Version 2021–2023. https://www.iucnredlist.org. Accessed 30 Mar 2022

  • Joshi AC (1933) A suggested explanation of the prevalence of vivipary on the sea-shore. J Ecol 21:209–212

    Article  Google Scholar 

  • Joshi AC (1934) A supplementary note on “A suggested explanation of the prevalence of vivipary on the sea-shore.” J Ecol 22:306–307

    Article  Google Scholar 

  • Kermode AR (2005) Role of abscisic acid in seed dormancy. J Plant Growth 24:319–344

    Article  CAS  Google Scholar 

  • Krassilov VA, Lewy Z, Nevo E, Silantieva N (2005) Late Cretaceous (Turonian) flora of Southern Negev, Israel. Sophia, Pensoft, 352 pp + 46 pls

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Lee JA, Harmer R (1980) Vivipary, a reproductive strategy in response to environmental stress? Oikos 35:254–265

    Article  Google Scholar 

  • Leuenberger BE (2008) Pereskia, Maihuenia, and Blossfeldia - taxonomic history, updates, and notes. Haseltonia 14:54–93

    Article  Google Scholar 

  • Linnaeus CV (1737) Flora Lapponica. Apud S, Schouten, Amsterdam

  • Lira F (2006) Estado de conservación de las subpoblaciones de Eriosyce aspillagae (Sohrens.) Katt. en su localidad tipo: un enfoque exploratorio. Rev Chilena Flora Veget. Año 9, Nº 1

  • Lombardi JA (1993) Viviparity in Rhipsalis pilocarpa Löfgren (Cactaceae). Ciênc Cult 45:407

    Google Scholar 

  • Lüttge U (1993) The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. New Phytol 125:59–71

    Article  PubMed  Google Scholar 

  • Majumder S, D’Rozario A, Bera S (2010) Vivipary in Indian Cupressaceae and its ecological consideration. Int J Bot 6:59–63

    Article  Google Scholar 

  • Michaletz ST, Weiser MD, McDowell NG, Zhou J, Kaspari M, Helliker BR, Enquist BJ (2016) The energetic and carbon economic origins of leaf thermoregulation. Nat Plants 2:16129

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi Y, Nerd A, Nobel PS (2010) Cacti as Crops Hort Rev 18:291–319

    Google Scholar 

  • Monterrey PCA, Trujillo B (1994) Identificación de plántulas de Cactaceae representativas de algunos géneros presentes en Venezuela. Ernstia 4:37–67

    Google Scholar 

  • Mottram R (2001) Rimacactus, a new genus of Cactaceae. Bradleya 19:75–82

    Article  Google Scholar 

  • Nagy KA, Odell DK, Seymour RS (1972) Temperature regulation by the inflorescence of Philodendron. Science 178:1195–1197

    Article  CAS  PubMed  Google Scholar 

  • Obroucheva NV (2005) What is new about seeds: genomics and proteomics. Russ J Plant Physiol 52:279–281

    Article  CAS  Google Scholar 

  • Onda Y, Kato Y, Abe Y, Ito T, Morohashi M, Ito Y, Ichikawa M, Matsukawa K, Kakizaki Y, Koiwa H, Ito K (2008) Functional coexpression of the mitochondrial alternative oxidase and uncoupling protein underlies thermoregulation in the thermogenic florets of skunk cabbage. Plant Physiol 146:636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega-Baes P, Aparicio M, Galíndez G (2010) Vivipary in the cactus family: an evaluation of 25 species from northwestern Argentina. J Arid Environ 74:1359–1361

    Article  Google Scholar 

  • Ortiz-Hernández YD, Livera-Muñoz M, Carrillo-Salazar JA, Valencia-Botin AJ, Castillo-Martínez R (2012) Agronomical, physiological, and cultural contributions of pitahaya (Hylocereus spp.) in Mexico. Isr J Plant Sci 60:359–370

    Google Scholar 

  • Pannier F (1962) Estudio fisiológico sobre la viviparia de Rhizophora mangle L. Acta Cient Venezolana 10:184–197

    Google Scholar 

  • Paperpile LLC (2022). The top list of academic search engines. https://paperpile.com/g/academic-search-engines/

  • Pérez-González SB, Reyes-Olivas Á, García-Moya E, Romero-Manzanares A, García-Nava JR, Lugo-García GA, Sánchez-Soto B (2015) Almacenamiento de semillas y germinación de Stenocereus thurberi, una cactácea con viviparidad facultativa. Bot Sci 93:273–282

    Article  Google Scholar 

  • Pérez-González SB (2013) Viviparidad, germinación y supervivencia in Stenocereus thurberi (Cactaceae). MSc Thesis. Colegio de Postgraduados, Montecillo, Texcoco, Mexico

  • Piedra-Malagón EM, Sosa V, Angulo D, Díaz-Toribio M (2022) Edible native plants of the Gulf of Mexico Province. Biodivers Data J 10:e80565

    Article  Google Scholar 

  • Pierce S, Stirling CM, Baxter R (2003) Pseudoviviparous reproduction of Poa alpina var. vivipara L. (Poaceae) during long-term exposure to elevated atmospheric CO2. Ann Bot 91:613–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillet M, Goettsch B, Merow C, Maitner B, Feng X, Roehrdanz PR, Enquist BJ (2022) Elevated extinction risk of cacti under climate change. Nat Plants 14:1–7

    Google Scholar 

  • Pirzadah TB, Malik B, Tahir I, ul Rehmann R, (2016) Vivipary in Fagopyrum esculentum / Živorodnost pri ajdi (Fagopyrum esculentum). Folia Biol 57:41–43

    Google Scholar 

  • Pliszko A, Górecki A (2021) First observation of true vivipary in Grindelia squarrosa (Asteraceae). Biologia 76:1147–1151

    Article  Google Scholar 

  • Poinar G Jr (2021) Precocious germination of a pine cone in Eocene Baltic amber. Hist Biol 10:1–4

    Google Scholar 

  • Rabinowitz D (1978) Dispersal properties of mangrove propagules. Biotropica 10:47–57

    Article  Google Scholar 

  • Raghavan V (2002) Induction of vivipary in Arabidopsis by silique culture: implications for seed dormancy and germination. Am J Bot 89:766–776

    Article  PubMed  Google Scholar 

  • Rao TA, Suresh PV, Sherief AN (1986) Multiple viviparity in a few taxa of mangroves. Curr Sci 55:259–261

    Google Scholar 

  • Rebaza G (2010) Viviparidad en seis especies de la costa Peruana. Mem. XIII Congreso Nacional de Botánica, Tingo María, Perú, p 183

  • Reyes-García C, Andrade JL (2009) Crassulacean acid metabolism under global climate change. New Phytol 181:754–757

    Article  PubMed  Google Scholar 

  • Rodríguez MV, Toorop PE, Benech-Arnold RL (2011) Challenges facing seed banks and agriculture in relation to seed quality. In: Kermode AR (ed) Seed dormancy. Humana Press, New York, pp 17–40

    Chapter  Google Scholar 

  • Rojas-Aréchiga M, Mandujano-Sánchez MC (2009) Nuevo registro de semillas vivíparas en dos especies de cactáceas. Cact Suc Mex 54:123–127

    Google Scholar 

  • Sadowski E-M, Schmidt AR, Seyfullah LJ, Kunzmann L (2017) Conifers of the ‘Baltic amber forest’ and their palaeoecological significance. Stapfia 106:1–73

    Google Scholar 

  • Seymour RS (1997) Plants that warm themselves. Sci Am 276:90–95

    Article  Google Scholar 

  • Seymour RS, Ito K (2006) Temperature regulation by thermogenic flowers. In: Taiz L, Zeiger E (eds) Plant physiology, 4th edn. Sinauer Assoc. Inc., Sunderland

    Google Scholar 

  • Seymour RS, Schultze-Motel P (1996) Thermoregulation in lotus flowers. Nature 383:305

    Article  CAS  Google Scholar 

  • Shankar U (2008) Occurrence of vivipary in Jatropha curcas L. Curr Sci 95:321–322

    Google Scholar 

  • Shi S, Huang Y, Zeng K, Tan F, He H, Huang J, Fu Y (2005) Molecular phylogenetic analysis of mangroves: independent evolutionary origins of vivipary and salt secretion. Mol Phylogenet Evol 34:159–166

    Article  CAS  PubMed  Google Scholar 

  • Silantieva NA, Krassilov VA (2006) Evolution of early angiosperm ecosystems: Albian-Turonian of Negev, Israel. Ninth international symposium on mesozoic terrestrial ecosystems and biota. Natural History Museum, London, pp 118–122

    Google Scholar 

  • Sosa V, Guevara R, Gutiérrez-Rodríguez BE, Ruiz-Domínguez C (2020) Optimal areas and climate change effects on dragon fruit cultivation in Mesoamerica. J Agric Sci 158:461–470

    Article  Google Scholar 

  • Thompson K (2000) The functional ecology of soil seed banks. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. CAB International, Oxford, pp 215–235

    Chapter  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Tomlinson PB, Cox PA (2000) Systematic and functional anatomy of seedlings in mangrove Rhizophoraceae: vivipary explained? Bot J Linn Soc 134:215–231

    Article  Google Scholar 

  • Tropicos.org. Missouri Botanical Garden. https://www.tropicos.org/home. Accessed 5 April 2022

  • Tweddle JC, Dickie JB, Baskin CC, Baskin JM (2003) Ecological aspects of seed desiccation sensitivity. J Ecol 91:294–304

    Article  Google Scholar 

  • van der Pijl L (1983) Principles of dispersal in higher plants, 3rd edn. Springer, Berlin

    Google Scholar 

  • Vega AS, de Agrasar ZR (2006) Vivipary and pseudovivipary in the Poaceae, including the first record of pseudovivipary in Digitaria (Panicoideae: Paniceae). S Afr J Bot 72:559–564

    Article  Google Scholar 

  • Wagner GP, Kin K, Muglia L, Pavličev M (2014) Evolution of mammalian pregnancy and the origin of the decidual stromal cell. Int J Dev Biol 58:117–126

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Mopper S, Hasestein KH (2001) Effects on salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang J, Sun M, He C, Yu K, Zhao B, Li R, Li J, Yang Z, Wang X, Duan H (2021) Multi-Omics analyses reveal systemic insights into maize vivipary. Plants 10:2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watling JR, Grant NM, Miller RE, Robinson SA (2008) Mechanisms of thermoregulation in plants. Plant Signal Behav 3:595–597

    Article  PubMed  PubMed Central  Google Scholar 

  • WFO. World Flora Online. Published on the Internet: http://www.worldfloraonline.org. Accessed 10 April 2022

  • Woodward D (2006) Research and conservation report: more examples of vivipary in Cactaceae. Cact Succ J (los Angeles) 78:4–5

    Article  Google Scholar 

  • Young KR, Duchicela S (2020) Abandoning Holocene dreams: proactive biodiversity conservation in a changing world. Ann Assoc Am Geogr 111:880–888

    Google Scholar 

  • Zhou XX, Cai LL, Fu MP, Hong LW, Shen YJ, Li QQ (2016) Progress in the studies of vivipary in mangrove plants. Chin J Plant Ecol 40:1328–1343

    Article  Google Scholar 

Download references

Acknowledgements

I am thankful to the anonymous reviewers for their careful reading of the manuscript and their insightful comments and suggestions. I am also grateful to numerous colleagues for their support. These people include Auri Rodrígues and Deusa Abreu for their assistance in the extraction of ABA and metabolites. José Delgadillo and Barry Hammel provided pictures and information on new reports of vivipary. My gratitude goes also to Tania Hernández-Hernández and journal Haseltonia for giving permission to use figures and to the personnel of my Plant Systematics laboratory, Odair Almeida, Dewey Litwiller, and Roy Vera-Vélez for feedback on early drafts of the manuscript.

Funding

The National Geographic Society (Grant No. 7382-02) and the University of Saskatchewan Tri-Council Bridge (Grant No. 411051) financed this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hugo Cota-Sánchez.

Ethics declarations

Conflict of interest

The author is Associate Editor of the Brazilian Journal of Botany, but this article was entirely handled by another Associate Editor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 KB)

Supplementary file2 (PDF 151 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cota-Sánchez, J.H. A compendium of vivipary in the Cactaceae: new reports, data, and research prospects. Braz. J. Bot 45, 1001–1027 (2022). https://doi.org/10.1007/s40415-022-00834-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00834-z

Keywords

Navigation