Skip to main content

Seed Development: A Comparative Overview on Biology of Morphology, Physiology, and Biochemistry Between Monocot and Dicot Plants

  • Chapter
  • First Online:
Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield

Abstract

By and large, the most valuable crops and thoroughly investigated model angiosperm species belong to dicotyledonous and monocotyledonous plants. In both groups, development of the seed plays a fundamental role in the reproduction and in determining the economic value of different species. While investigation of seed development is far from being applied to every monocot and dicot species, the available information indicates that a large degree of variability in seed developmental patterns exists within both monocots and dicots. At the same time, however, specific features characterizing the morphology, physiology, and biochemistry of the seed can be identified in these two large taxa. In this chapter, a comparative assessment of the salient features characterizing seed development in monocots and dicots is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Kapoor S, Tyagi AK (2011) Transcription factors regulating the progression of monocot and dicot seed development. Bioessays 33:189–202

    Article  PubMed  CAS  Google Scholar 

  • Barrôco RM, Peres A, Droual AM, De Veylder L, Nguyen LSL, De Wolf J, Mironov V, Peerbolte R, Beemster GTS, Inzé D, Broekaert WF, Frankard V (2006) The cyclin-dependent kinase inhibitor Orysa; KRP1 plays an important role in seed development of rice. Plant Physiol 142:1053–1064

    Article  PubMed  Google Scholar 

  • Baskin CC, Baskin JM (2007) A revision of Martin’s seed classification system, with particular reference to his dwarf-seed type. Seed Sci Res 17:11–20

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Beeckman T, De Rycke R, Viane R, Inzé D (2000) Histological study of seed coat development in Arabidopsis thaliana. J Plant Res 113:139–148

    Article  Google Scholar 

  • Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670

    Article  PubMed  CAS  Google Scholar 

  • Berjak P (2006) Unifying perspectives of some mechanisms basic to desiccation tolerance across life forms. Seed Sci Res 16:1–15

    Article  CAS  Google Scholar 

  • Bewley J, Black M (1994) Seeds: physiology of development and germination, 2nd ed. Plenum, New York. ISBN 0-306-44747-9

    Google Scholar 

  • Brown RC, Lemmon BE, Olsen OA (1994) Endosperm development in barley: microtubule involvement in the morphogenetic pathway. Plant Cell 6:1241–1252

    PubMed  Google Scholar 

  • Browse J (1997) Synthesis and storage of fatty acids. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic, Dordrecht, pp 407–440

    Google Scholar 

  • Chandler J, Nardmann J, Werr W (2008) Plant development revolves around axes. Trends Plant Sci 13:78–84

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Chourey PS (1999) Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize. Theor Appl Genet 98:485–495

    Article  CAS  Google Scholar 

  • Chibbar RN, Ganeshan S, Baga M, Khandelwal RL (2004) Carbohydrate metabolism. In: Wringley C (ed) Encyclopedia of grain. Science. Elsevier, Oxford, pp 168–179

    Chapter  Google Scholar 

  • Coelho CM, Dante RA, Sabelli PA, Sun Y, Dilkes BP, Gordon-Kamm WJ, Larkins BA (2005) Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol 138:2323–2336

    Article  PubMed  CAS  Google Scholar 

  • Coleman CE, Larkins BA (1999) The prolamins of maize. In: Shewry PR, Case R (eds) Seed proteins. Kluwer Academic, Dordrecht, pp 109–139

    Chapter  Google Scholar 

  • Davis RW, Smith JD, Cobb BG (1990) A light and electron microscope investigation of the transfer cell region of maize caryopses. Can J Botany 68:471–479

    Article  Google Scholar 

  • Debeaujon I, Lepiniec L, Pourcel L, Routaboul JM (2007) Seed coat development and dormancy. In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination. Blackwell, Oxford, pp 25–49

    Chapter  Google Scholar 

  • DeMason DA (1997) Endosperm structure and development. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic, Dordrecht, pp 73–115

    Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  PubMed  CAS  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Hericher D, Belghazi M, Henry C, Kuster H, Thompson RD (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Mol Cell Proteomics 6:2165–2179

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C (2007) Combined networks regulating seed maturation. Trends Plant Sci 12:294–300

    Article  PubMed  CAS  Google Scholar 

  • Hannah LC (2007) Starch formation in the cereal endosperm. In: Olsen OA (ed) Plant cell monographs. Endosperm: development and molecular biology, vol 8. Springer, Berlin, pp 179–193

    Google Scholar 

  • Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477

    Article  PubMed  CAS  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–614

    PubMed  CAS  Google Scholar 

  • Ingram GC (2010) Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247:195–214

    Article  PubMed  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  PubMed  CAS  Google Scholar 

  • Kawashima T, Goldberg RB (2010) The suspensor: not just suspending the embryo. Trends Plant Sci 15:23–30

    Article  PubMed  CAS  Google Scholar 

  • Kigel J, Galili G (1995) Seed development and germination. CRC Press, New York. ISBN 0824792297

    Google Scholar 

  • Kladnik A, Chamusco K, Dermastia M, Chourey P (2004) Evidence of programmed cell death in post-phloem transport cells of the maternal pedicel tissue in developing caryopsis of maize. Plant Physiol 136:3572–3581

    Article  PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540

    Article  PubMed  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kowles RV (2009) The importance of DNA endoreduplication in the developing endosperm of maize. Maydica 54:387–399

    Google Scholar 

  • Kropf DL (1994) Cytoskeletal control of cell polarity in a plant zygote. Dev Biol 165:361–371

    Article  PubMed  CAS  Google Scholar 

  • Lakshamanan KK (1972) The monocot embryo. In: Varghese TM, Grover RK (eds) Vistas in plant sciences, vol 2. International Biological Sciences, Hissar

    Google Scholar 

  • Linkies A, Graeber K, Knight C, Leubner-Metzger G (2010) The evolution of seeds. New Phytol 186:817–831

    Article  PubMed  CAS  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5:1383–1399

    PubMed  CAS  Google Scholar 

  • Lur HS, Setter TL (1993a) Endosperm development of maize defective-kernel (Dek) mutants. Auxin and cytokinin levels. Ann Bot 72:1–6

    Article  CAS  Google Scholar 

  • Lur HS, Setter TL (1993b) Role of auxin in maize endosperm development. Timing of nuclear DNA endoreduplication, zein expression, and cytokinin. Plant Physiol 103:273–280

    CAS  Google Scholar 

  • Martin AC (1946) The comparative internal morphology of seeds. Am Mid Nat 36:513–660

    Article  Google Scholar 

  • Melkus G, Rolletschek H, Radchuk R, Fuchs J, Rutten T, Wobus U, Altmann T, Jakob P, Borisjuk L. (2009). The metabolic role of the legume endosperm: a noninvasive imaging study. Plant Physiol 151:1139–1154

    Article  PubMed  CAS  Google Scholar 

  • Moïse JA, Han S, Gudynaite-Savitch L, Johnson DA, Miki BLA (2005) Seed coats: structure, development, composition, and biotechnology. In Vitro Cell Dev Biol-Plant 41:620–644

    Article  Google Scholar 

  • Morris RO (1997) Hormonal regulation of seed development. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, Dordrecht, pp 117–149

    Google Scholar 

  • Nambara E, Marion-Poll A (2003) ABA action and interaction in seeds. Trends Plant Sci 8:213–217

    Article  PubMed  CAS  Google Scholar 

  • Natesh S, Rau MA (1984) The embryo. In: Johri LBM (ed) Embryology of angiosperms. Springer-Verlag, Berlin, pp 377–443

    Chapter  Google Scholar 

  • Nguyen HN, Sabelli PA, Larkins BA (2007) Endoreduplication and programmed cell death in the cereal endosperm. In: Olsen OA (ed) Plant cell monographs. Endosperm: development and molecular biology, vol 8. Springer-Verlag, Berlin/Heidelberg, pp 21–43

    Google Scholar 

  • Nowack MK, Ungru A, Bjerkan KN, Grini PE, Schnittger A (2010) Reproductive cross-talk: seed development in flowering plants. Biochem Soc Trans 38:604–612

    Article  PubMed  CAS  Google Scholar 

  • Offler CE, McCurdy DW, Patrick JW, Talbot MJ (2003) Transfer cells: cells specialized for a special purpose. Annu Rev Plant Biol 54:431–454

    Article  PubMed  CAS  Google Scholar 

  • Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289

    Article  PubMed  Google Scholar 

  • Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227

    Article  PubMed  CAS  Google Scholar 

  • Osborne TB (1924) The vegetable proteins, 2nd edn. Longmans, Green & Co, London, UK

    Google Scholar 

  • Patrick JW, Offler CE (2001) Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52:551–564

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phopsphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, Dordrecht, pp 441–477

    Google Scholar 

  • Radchuk R, Emery RJN, Weier D, Vigeolas H, Geingenberger P, Lunn JE, Feil R, Weschke W, Weber H (2010) Sucrose non-fermenting kinase 1 (SnRK1) coordinates metabolic and hormonal signals during pea cotyledon growth and differentiation. Plant J 61:324–338

    Article  PubMed  CAS  Google Scholar 

  • Radchuk V, Weier D, Radchuk R, Weschke W, Weber H (2011) Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth. J Exp Bot 62:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Raghavan V (1986) Embryogenesis in angiosperms: a developmental and experimental study. Cambridge University Press, Cambridge

    Google Scholar 

  • Raghavan V (1997) Molecular embryology of flowering plants. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Raghavan V, Sharma KK (1995) Zygotic embryogenesis in gymnosperms and angiosperms. In: Torpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht, pp 73–115

    Chapter  Google Scholar 

  • Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agric Res 53:881–916

    Google Scholar 

  • Ruan YL, Chourey PS (2006) Carbon partitioning in developing seeds. In: Basra AS (ed) Handbook of seed science and technology. Food Products Press, Binghamton, pp 125–152

    Google Scholar 

  • Sabelli PA, Larkins BA (2008) The endoreduplication cell cycle: regulation and function. In: Verma DPS, Hong Z (eds) Cell division control in plants. Springer-Verlag, Berlin-Heidelberg, pp 75–100

    Chapter  Google Scholar 

  • Sabelli PA (2012) Replicate and die for your own good: endoreduplication and cell death in the cereal endosperm. J Cereal Sci 56:9–20

    Google Scholar 

  • Sabelli PA, Larkins BA (2009a) The contribution of cell cycle regulation to endosperm development. Sex Plant Reprod 22:207–219

    Article  Google Scholar 

  • Sabelli PA, Larkins BA (2009b) The development of endosperm in grasses. Plant Physiol 149:14–26

    Article  CAS  Google Scholar 

  • Schaffner M (1906) The embryology of the shepherd’s purse. Ohio Nat 7:1–8

    Google Scholar 

  • Schneitz K, Hülskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749

    Article  Google Scholar 

  • Sharma HP (2009) Plant embryology: classical and experimental. Alpha Science Intl Ltd., USA

    Google Scholar 

  • Shewry PR (2004a) Protein chemistry of dicotyledonous grains. In: Wrigley C (ed) Encyclopedia of Grain Science. Elsevier, Oxford, pp 466–472

    Chapter  Google Scholar 

  • Shewry PR (2004b) Protein synthesis and deposition. In: Wrigley C (ed) Encyclopedia of grain science. Elsevier, Oxford, pp 472–480

    Chapter  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    PubMed  CAS  Google Scholar 

  • Shih MD, Hoekstra FA, Hsing YI (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Borisjuk L, Junker BH, Mock HP, Rolletschek H, Seiffert U, Weschke W, Wobus U (2010) Barley grain development:Toward an integrative view. Int Rev Cell Mol Biol 281:49–89

    Article  PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Radchuk V, Strickert M, Miersch O, Weschke W, Wobus U (2006) Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA-regulated maturation in developing barley seeds. Plant J 47:310–327 (Erratum in: Plant J 47 (2006) 987)

    Article  PubMed  CAS  Google Scholar 

  • Thorne JH (1985) Phloem unloading of C and N assimilates in developing seeds. Annu Rev Plant Physiol 36:317–343

    Article  CAS  Google Scholar 

  • Vijayaraghavan MR, Prabhakar K (1984) The endosperm. In: Johri LBM (ed) Embryology of angiosperms. Springer-Verlag, Berlin, pp 319–376

    Chapter  Google Scholar 

  • Vitale A, Denecke J (1999) The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 11:615–628

    PubMed  CAS  Google Scholar 

  • Webb MC, Gunning BES (1991) The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh. Planta 184:187–195

    Article  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (1997) Sugar import and metabolism during seed development. Trends Plant Sci 2:169–174

    Article  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  PubMed  CAS  Google Scholar 

  • Weselake RJ (2005) Storage lipids. In: Murphy DJ (ed) Plant lipids: biology, utilization and manipulation. Blackwell Publishing, Oxford, pp 162–221

    Google Scholar 

  • Wilson DR, Larkins BA (1984) Zein gene organization in maize and related grasses. J Mol Evol 20:330–340

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Zhang J, Liu K, Wang Z, Liu L (2006) Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol 171:293–303

    Article  PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the U.S. Department of Energy Grant DE-FG02-96ER20242.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo A. Sabelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sabelli, P.A. (2012). Seed Development: A Comparative Overview on Biology of Morphology, Physiology, and Biochemistry Between Monocot and Dicot Plants. In: Agrawal, G., Rakwal, R. (eds) Seed Development: OMICS Technologies toward Improvement of Seed Quality and Crop Yield. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4749-4_1

Download citation

Publish with us

Policies and ethics