Skip to main content
Log in

Macro- and micromorphological characterization of staminodes in the Plains Prickly Pear Opuntia polyacantha Haw. (Cactaceae)

  • Structural Botany - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Staminodes are floral structures occurring in approximately one-third of the angiosperms. These organs often go unnoticed in nature because they may mimic other floral parts. Consequently, their macro- and micromorphological portrayal in the literature is limited. This study presents a detailed descriptive account of staminodes in the Cactaceae, specifically the Plains Prickly Pear, Opuntia polyacantha Haw., a species with both regular (lacking staminodes) and staminodial flowers. We present the first morphological overview of staminodes in the Cactaceae, rendering a wider perception of the variability in patterns of floral parts in this plant group. Light and scanning electron microscopy revealed that staminodes are complex parts located in the middle and outer androecial whorls and display a wide diversity of shapes and sizes. These staminodes (resembling either stamens or tepals) are considered transitional organs deriving from fertile stamens along the androecial margins via a series of transformations involving gradual widening and amalgamation with tepals. Unlike the typical dysfunctional angiosperm staminodes, pollen viability counts showed that some O. polyacantha staminodes produce fertile pollen similar in shape and size to regular stamens. The staminodes boost an increase in floral size and diameter in relation to non-staminodial flowers. Thus, larger flower diameter and landing platform combined with added viable pollen from staminodes promote visual attraction for pollinators and reproductive assurance. Because of the presence of fertile pollen, broadening the meaning of the term staminode is discussed along with the putative origin of these appendages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida OJG, Paoli AAS, Cota-Sánchez JH (2012) A macro- and micromorphological survey of floral and extrafloral nectaries in the epiphytic cactus Rhipsalis teres (Cactoideae: Rhipsalideae). Flora 207:119–125

    Article  Google Scholar 

  • Almeida OJG, Souza LA, Paoli AAS, Davis AR, Cota-Sánchez JH (2018) Pericarp development in fruit of epiphytic cacti: implications for fruit classification and macro-morphology in the Cactaceae. Botany 96:621–635

    Article  Google Scholar 

  • Anderson EF (2001) The cactus family. Timber Press Inc, Portland

    Google Scholar 

  • Appleton AD, Schenk JJ (2021) Evolution and development of staminodes in Paronychia (Caryophyllaceae). Int J Plant Sci 182:377–388

    Article  Google Scholar 

  • Backeberg HV (1958) Die Cactaceae, Vol.1: I-VI, 35 pl. VEB Gustav Fischer, Verlag, Berlin

  • Barthlott W, Hunt DR (1993) Cactaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer-Verlag, Berlin, pp 161–197

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint https://arxiv.org/abs/1406.5823

  • Botnaru L, Schenk JJ (2019) Staminode evolution in Mentzelia section Bartonia (Loasaceae) and its impact on insect visitation rates. Bot J Linn Soc 190:151–164

    Article  Google Scholar 

  • Braun PJ (1988) On the taxonomy of Brazilian Cereeae (Cactaceae). Bradleya 6:85–99

    Article  Google Scholar 

  • Bravo-Hollis H (1978) Las cactáceas de México, vol 1. Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 170:627–643

    Article  Google Scholar 

  • Brockington S, Dos Santos P, Glover B, Ronse De Craene L (2013) Androecial evolution in Caryophyllales in light of a parahyletic Molluginaceae. Am J Bot 100:1757–1778

    Article  PubMed  Google Scholar 

  • Buxbaum F (1950) Morphology of cacti. Section II: flower. Abbey Garden Press, Pasadena, pp 93–170

    Google Scholar 

  • Cota-Sánchez JH (2002) Taxonomy, distribution, rarity status and uses of Canadian cacti. Haseltonia 9:17–25

    Google Scholar 

  • Cota-Sánchez JH, Almeida OJG, Falconer DJ, Choi HJ, Bevan L (2013) Intriguing thigmonastic (sensitive ) stamens in the Plains Prickly Pear Opuntia polyacantha (Cactaceae). Flora 208:381–389

    Article  Google Scholar 

  • de Carvalho JDT, de Oliveira JMS (2021) Structural anomalies in pollen grains of Dyckia racinae L.B.Sm. (Bromeliaceae). Braz J Bot 44:179–185

    Article  Google Scholar 

  • Díaz L, Cocucci AA (2003) Functional gynodioecy in Opuntia quimilo (Cactaceae), a tree cactus pollinated by bees and hummingbirds. Plant Biol 5:531–539

    Article  Google Scholar 

  • Ellis B, Daly DC, Hickey LJ, Johnson KR, Mitchell JD, Wilf P, Wing SL (2009) Manual of leaf architecture. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Endress PK (2001) Origins of flower morphology. J Exp Zool 291:105–115

    Article  CAS  PubMed  Google Scholar 

  • Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. Adv Bot Res 44:1–61

    Article  Google Scholar 

  • Endress PK, Matthews ML (2006) Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Org Divers Evol 6:257–293

    Article  Google Scholar 

  • Garralla S, Cuadrado GA (2007) Pollen morphology of Austrocylindropuntia Backeb, Maihueniopsis Speg., Opuntia Mill. and Tephrocactus Lem. (Cactaceae, Opuntioideae) of Argentina. Rev Palaeobot Palynol 146:1–17

    Article  Google Scholar 

  • Gonçalves-Esteves V, Cartaxo-Pinto S, Marinho EB, Esteves RL, Mendonça CBF (2021) Pollen morphology and evolutionary history of Sapindales. Braz J Bot. https://doi.org/10.1007/s40415-021-00719-7

    Article  Google Scholar 

  • González VV, Gorostiague P, Ortega-Baes P, Galati BG, Ferrucci MS (2021) Nectary structure is not related to pollination system in Trichocereeae cactus from Northwest Argentina. An Acad Bras Cienc 93:S4. https://doi.org/10.1590/0001-3765202120201401

    Article  Google Scholar 

  • Goto K, Kyozuka J, Bowman JL (2001) Turning floral organs into leaves, leaves into floral organs. Curr Opin Genet Dev 11:449–456

    Article  CAS  PubMed  Google Scholar 

  • Gross CL (1993) The breeding system and pollinators of Melastoma affine (Melastomataceae); a pioneer shrub in tropical Australia. Biotropica 25:468–474

    Article  Google Scholar 

  • Gutiérrez-Flores C, Cota-Sánchez JH, León-de la Luz JL, García-De León FJ (2017) Disparity in floral traits and breeding systems in the iconic columnar cactus Pachycereus pringlei (Cactaceae). Flora 235:18–28

    Article  Google Scholar 

  • Hartmann HEK (1993) Aizoaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 37–69

    Google Scholar 

  • Hernández-Cruz R, Silva-Martínez J, García-Campusano F, Cruz-García F, Orozco-Arroyo G, Alfaro I, Vázquez-Santana S (2019) Comparative development of staminate and pistillate flowers in the dioecious cactus Opuntia robusta. Plant Reprod 32:257–273

    Article  PubMed  Google Scholar 

  • Hufford L (2003) Homology and developmental transformation: models for the origins of the staminodes of Loasaceae subfamily Loasoideae. Int J Plant Sci 164:S409–S439

    Article  Google Scholar 

  • Huynh KL (1983) Carpellodes or staminodes? Problems in the genus Pandanus (Pandanaceae), and their taxonomic significance. Bot J Linn Soc 87:177–192

    Article  Google Scholar 

  • Hrycan WC, Davis AR (2005) Comparative structure and pollen production of the stamens and pollinator-deceptive staminodes of Commelina coelestis and C. dianthifolia (Commelinaceae). Ann Bot 95:1113–1130

    Article  PubMed  PubMed Central  Google Scholar 

  • Kebert T (2014) Floral diagram generator. http://kvetnidiagram.8u.cz/index_en.php

  • Kiesling R (1980) Gymnocalycium mesopotamicum sp. nov. Cact Succ J (Great Britain) 42:39–42

    Google Scholar 

  • Kirchoff BK (1991) Homeosis in the flowers of the Zingiberales. Am J Bot 78:833–837

    Article  Google Scholar 

  • Kozar F (1974) Ultrastructure of pollen of Opuntia polyacantha. Can J Bot 52:313–315

    Article  Google Scholar 

  • Kurtz EB (1948) Pollen grain characters of certain Cactaceae. Bull Torrey Bot Club 75:516–522

    Article  Google Scholar 

  • Kurtz EB (1963) Pollen morphology of the Cactaceae. Grana 4:367–372

    Google Scholar 

  • Leins P, Erbar C (2010) Flower and fruit: morphology, ontogeny, phylogeny, function and ecology. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Leuenberger BE (1986) Pereskia (Cactaceae). Mem New York Bot Gard 41:1–141

    Google Scholar 

  • Li X (2011) Pollen fertility/viability assay using FDA staining. https://bio-protocol.org/bio101/e75

  • Mayer SS, Charlesworth D (1991) Cryptic dioecy in flowering plants. Trends Ecol Evol 6:320–325

    Article  CAS  PubMed  Google Scholar 

  • McFarland JD, Kevan PG, Lane MA (1989) Pollination biology of Opuntia imbricata (Cactaceae) in southern Colorado. Can J Bot 67:24–28

    Article  Google Scholar 

  • Meaders C, Min Y, Freedberg KJ, Kramer E (2020) Developmental and molecular characterization of novel staminodes in Aquilegia. Ann Bot 126:231–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orozco-Arroyo G, Vázquez-Santana S, Camacho A, Dubrovsky JG, Cruz-García F (2012) Inception of maleness: auxin contribution to flower masculinization in the dioecious cactus Opuntia stenopetala. Planta 236:225–238

    Article  CAS  PubMed  Google Scholar 

  • Osborn MM, Kevan PG, Lane MA (1988) Pollination biology of Opuntia polyacantha and Opuntia phaeacantha (Cactaceae) in southern Colorado. Plant Syst Evol 159:85–94

    Article  Google Scholar 

  • Pin A (1998) Nota sobre dos especies de Brasiliopuntia (Cactaceae): B. schulzii y B. brasiliensis. Rojasiana 4:144–163

    Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org

  • Reyes-Agüero JA, Aguirre JR, Valiente-Banuet A (2006) Reproductive biology of Opuntia: a review. J Arid Environ 64:549–585

    Article  Google Scholar 

  • Ronse De Craene LP (2003) The evolutionary significance of homeosis in flowers: a morphological perspective. Int J Plant Sci 164:S225–S235

    Article  Google Scholar 

  • Ronse De Craene LP (2008) Homology and evolution of petals in the core eudicots. Syst Bot 33:301–325

    Article  Google Scholar 

  • Ronse De Craene LP (2013) Reevaluation of the perianth and androecium in Caryophyllales: implications for flower evolution. Plant Syst Evol 299:1599–1636

    Article  Google Scholar 

  • Ronse De Craene LP, Brockington SF (2013) Origin and evolution of petals in angiosperms. Plant Ecol Evol 146:5–25

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF (2001) Staminodes: their morphological and evolutionary significance. Bot Rev 67:351–402

    Article  Google Scholar 

  • Ronse De Craene LP, Smets EF, Vanvinckenroye P (1998) Pseudodiplostemony, and its implications for the evolution of the androecium in the Caryophyllaceae. J Plant Res 111:25–43

    Article  Google Scholar 

  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandvik SM, Totland Ø (2003) Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions. Can J Bot 81:49–56

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Schlindwein C, Wittmann D (1997) Stamen movements in flowers of Opuntia (Cactaceae) favour oligolectic pollinators. Plant Syst Evol 204:179–193

    Article  Google Scholar 

  • Strittmatter LI, Hickey RJ, Negrón-Ortiz V (2008) Heterochrony and its role in sex determination of cryptically dioecious Consolea (Cactaceae) staminate flowers. Bot J Linn Soc 156:305–326

    Article  Google Scholar 

  • Strittmatter LI, Negrón-Ortiz V, Hickey RJ (2002) Subdioecy in Consolea spinosissima (Cactaceae): breeding system and embryological studies. Am J Bot 89:1373–1387

    Article  PubMed  Google Scholar 

  • Verde GL, La Mantia T (2011) The role of native flower visitors in pollinating Opuntia ficus-indica (L.) Mill., naturalized in Sicily. Acta Oecol 37:413–417

    Article  Google Scholar 

  • Walker-Larsen J, Harder LD (2000) The evolution of staminodes in angiosperms: patterns of stamen reduction, loss, and functional re-invention. Am J Bot 87:1367–1384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the Plant Systematics personnel for critical comments on early drafts of the manuscript. Special thanks to Mr. Dewey Litwiller, and Mr. Guosheng Liu, and Mr. Marlynn Mierau for technical assistance.

Funding

Financial support for this study was made possible by the National Geographic Society (Grant No. 7382-02) and the University of Saskatchewan Tri-Council Bridge (Grant No. 411051) to JHCS.

Author information

Authors and Affiliations

Authors

Contributions

RSR conducted data collection, microscopic work, and preparation of figures of flowers and staminodes. RSR, DJF, and NAB carried out fieldwork and assisted with data collection. RVV conducted the statistical analyses and prepared related figures for the manuscript. JHCS conceived, designed, supervised, and validated the research. All authors contributed to discussions, writing of the manuscript, and read and approved the final document.

Corresponding author

Correspondence to J. Hugo Cota-Sánchez.

Ethics declarations

Conflict of interest

J. Hugo Cota-Sánchez is Associate Editor of the Brazilian Journal of Botany, and this article was entirely handled by a different Associate Editor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, R.S., Vera-Vélez, R., Falconer, D.J. et al. Macro- and micromorphological characterization of staminodes in the Plains Prickly Pear Opuntia polyacantha Haw. (Cactaceae). Braz. J. Bot 45, 665–678 (2022). https://doi.org/10.1007/s40415-022-00790-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00790-8

Keyword

Navigation