Skip to main content
Log in

Transcriptome analysis of flower color variation in five Rhododendron species (Ericaceae)

  • Genetics & Evolutionary Biology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Rhododendron genus is famous with important ecology impacts, ornamental values, and high medicine values. To obtain a comprehensive overview of anthocyanin regulatory networks, RNA-seq and de novo assembly of five Rhododendron species flower tissues were performed, generating 159,408 unigenes with an average length of 490 bp and an N50 of 552 bp. In particular, 106,766 unigenes could be annotated. Flavonoid biosynthesis was the most abundant KEGG pathway. Genes controlling flower color varied in different species: transcripts involving in carotenoid biosynthesis and isoflavonoid biosynthesis highly expressed in Rhododendron molle G. Don possessing yellow color flower; genes involved in flavone and flavonol biosynthesis showed higher abundance in Rhododendron fortune Lindl. with light pink flowers; transcripts of unigenes participated in flavonoid biosynthesis exhibited higher levels in Rhododendron mariesii Hemsl. with pink color; unigenes involved in anthocyanin biosynthesis showed higher mRNA levels in Rhododendron simsii Planch. with red color; genes involved in carotenoid biosynthesis and flavonoid biosynthesis showed higher expression levels in Rhododendron pulchrum Sweet with purplish red flowers. The five species were clustered into two main groups: group 1 (R. fortune and R. mariesii) and group 2 (R. simsii, R. molle and R. pulchrum) based on expression levels of differentially expressed genes (DEGs). In particular, R. molle showed a closer relationship with R. simsii. This study will provide rich genetic information for further mechanism analysis of flower color variation and genetic improvement of flower color in Rhododendron species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All sequence data generated or supported the findings of this study have been deposited in NCBI (Accession: SRS1967671).

References

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione s-transferases. Plant Cell 10:1135–1149

    Article  CAS  PubMed Central  Google Scholar 

  • Ayabe SI, Akashi T (2006) Cytochrome P450s in flavonoid metabolism. Phytochem Rev 5:271–282

    Article  CAS  Google Scholar 

  • Cai Y, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the Amaranthaceae. J Agr Food Chem 51:2288–2294

    Article  CAS  Google Scholar 

  • Cheon KS, Nakatsuka A, Kobayashi N (2011) Isolation and expression pattern of genes related to flower initiation in the evergreen azalea, Rhododendron × pulchrum ‘Oomurasaki.’ Sci Hortic 130:906–912

    Article  CAS  Google Scholar 

  • Cheon KS, Nakatsuka A, Tasaki K (2013) Expression pattern of several flowering-related genes during flower bud formation in Rhododendron×pulchrum “oomurasaki.” J JPN Soc Hortic Sci 82:263–269

    Article  CAS  Google Scholar 

  • Choudhary S, Thakur S, Najar RA, Majeed A, Singh A, Bhardwaj P (2018) Transcriptome characterization and screening of molecular markers in ecologically important Himalayan species (Rhododendron arboreum). Genome 61:417–428

    Article  CAS  Google Scholar 

  • Christiaens A, Pauwels E, Gobin B, Van Labeke MC (2015) Flower differentiation of azalea depends on genotype and not on the use of plant growth regulators. Plant Growth Regul 75:245–252

    Article  CAS  Google Scholar 

  • Daiki M, Akira N, Takuya B, Ikuo M, Nobuo K (2014) Pigment composition patterns and expression of anthocyanin biosynthesis genes in Rhododendron kiusianum, R. kaempferi, and their natural hybrids on Kirishima Mountain mass Japan. J Jpn Soc Hortic Sci 83:156–162

    Article  Google Scholar 

  • De KE, Desmet L, Van BE, De RJ (2013) How to perform RT-qPCR accurately in plant species? A case study on flower colour gene expression in an azalea (Rhododendron simsii hybrids) mapping population. BMC Mol Biol 14:1–15

    Article  Google Scholar 

  • Dewey CN, Li B (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323–323

    Article  Google Scholar 

  • Dunemann F, Kahnau R, Stange I (1999) Analysis of complex leaf and flower characters in Rhododendron using a molecular linkage map. Theor Appl Genet 98:1146–1155

    Article  CAS  Google Scholar 

  • Fang L, Tong J, Dong YF, Xu DY, Mao J, Zhou Y (2017) De novo RNA sequencing transcriptome of Rhododendron obtusum identified the early heat response genes involved in the transcriptional regulation of photosynthesis. PloS One 12:e0186376

    Article  PubMed Central  Google Scholar 

  • Gao L, Yang H, Liu H, Hu Y (2016) Extensive transcriptome changes underlying the flower color intensity variation in Paeonia ostii. Front Plant Sci 6:1205

    Article  PubMed Central  Google Scholar 

  • Gautam V, Kohli SK, Kapoor D, Bakshi P, Ahmad P (2020) Stress protective effect of Rhododendron arboreum leaves (MEL) on chromium-treated vigna radiata plants. J Plant Growth Regul. https://doi.org/10.1007/s10681-012-0809-7

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fab L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 29:644–652

    Article  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  Google Scholar 

  • Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang JH, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D (2002) Rose Scent: genomics approach to discovering novel floral fragrance–related genes. Plant Cell 14:2325–2338

    Article  CAS  PubMed Central  Google Scholar 

  • Hill CB, Cassin A, Keeble-Gagnère G, Doblin MS, Bacic A, Roessner U (2016) De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure. Sci Rep 6:31558

    Article  CAS  PubMed Central  Google Scholar 

  • Irish VF (2010) The flowering of Arabidopsis flower development. Plant J 61:1014

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed Central  Google Scholar 

  • Katia P, Chiara T (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  Google Scholar 

  • Keyser ED, Lootens P, Bockstaele EV, Riek JD (2013) Image analysis for QTL mapping of flower colour and leaf characteristics in pot azalea. Euphytica 189:445–460

    Article  Google Scholar 

  • Liang M, Yang X, Li H, Su S, Yi H, Chai L, Deng X (2015) De novo transcriptome assembly of pummelo and molecular marker development. PLoS One 10:e0120615

    Article  PubMed Central  Google Scholar 

  • Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400

    Article  CAS  PubMed Central  Google Scholar 

  • Mizuta D, Ban T, Miyajima I, Nakatsuka A, Kobayashi N (2009) Comparison of flower color with anthocyanin composition patterns in evergreen azalea. Sci Hortic 122:594–602

    Article  CAS  Google Scholar 

  • Mouradov A, Cermer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    Article  CAS  PubMed Central  Google Scholar 

  • Nakatsuka A, Mizuta D, Kii Y, Miyajima I, Kobayashi N (2008) Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Sci Horti 118:314–320

    Article  CAS  Google Scholar 

  • Nishihara M, Nakatsuka T (2011) Genetic engineering of flavonoid pigments to modify flower color in floricultural plants. Biotechnol Let 33:433–441

    Article  CAS  Google Scholar 

  • Ozsolak F, Milos PM (2011) Single-molecule direct RNA sequencing without cDNA synthesis. Wires RNA 2:565–570

    Article  CAS  Google Scholar 

  • Popescu R, Kopp B (2013) The genus Rhododendron: an ethnopharmacological and toxicological review. J Ethnopharmacol 147:42–62

    Article  CAS  Google Scholar 

  • Rock CD, Zeevaart JA (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88:7496–7499

    Article  CAS  PubMed Central  Google Scholar 

  • Scheiber SM, Jarret RL, Robacker CD, Newman M (2000) Genetic relationships within Rhododendron L. section Pentanthera G. Don based on sequences of the internal transcribed spacer (ITS) region. Sci Hortic 85:123–135

    Article  CAS  Google Scholar 

  • Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S (2016) TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome Res 26:1134–1144

    Article  CAS  PubMed Central  Google Scholar 

  • Sun H, Wang J, Que J, Peng Y, Yu Y, Wang L, Ye H, Huang K, Xue Y, Zhou Y, Ji K (2019) RNA sequencing revealing the role of amp-activated protein kinase signaling in mice myocardial ischemia reperfusion injury. Gene 703:91–101

    Article  CAS  Google Scholar 

  • Wang XQ, Huang Y, Long CL (2010) Cross-amplification and characterization of microsatellite loci for the genus Rhododendron. HortScience 45:1394–1397

    Article  Google Scholar 

  • Wang S, Li Z, Jin W, Famg Y, Yang Q, Xiang J (2018) Transcriptome analysis and identification of genes associated with flower development in Rhododendron pulchrum Sweet (Ericaceae). Gene 679:108–118

    Article  CAS  Google Scholar 

  • Wang S, Huang S, Yang J, Li Z, Zhang M, Fang Y, Yang Q, Jin W (2021) Metabolite profiling of violet, white and pink flowers revealing flavonoids composition patterns in Rhododendron pulchrum Sweet. J Biosci 46:3

    Article  CAS  Google Scholar 

  • Xiao Z, Su J, Sun X, Li C, He L, Cheng S, Liu X (2018) De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing. Genes Genome 40:591–601

    Article  CAS  Google Scholar 

  • Xing W, Liao J, Cai M, Xia Q, Liu Y, Zeng W, Jin X (2017) De novo assembly of transcriptome from Rhododendron latoucheae Franch. using Illumina sequencing and development of new EST-SSR markers for genetic diversity analysis in Rhododendron. Tree Genet Genomes 13:53

    Article  Google Scholar 

  • Xue J (2008) Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. J Exp Bot 59:2161–2169

    Article  CAS  PubMed Central  Google Scholar 

  • Yoshida K (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26:857–974

    Article  Google Scholar 

Download references

Acknowledgements

This research results reported in this paper are funded by National Natural Science Foundation of China (31500995), fund granted by Hubei Intellectual Property Bureau (2019-1-35), Open fund of Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization (201932103 and 201931503), and fund from Assessment and Comprehensive Utilization of Characteristic Biological resources in Dabie Mountains (4022019006).

Author information

Authors and Affiliations

Authors

Contributions

ZL and QY has performed the RNA-seq and data analysis and prepared the draft manuscript; XD and YZ also did statistical analysis; SZ carried out the qRT-PCR; WZ and SW designed the whole research, as well as wrote the final manuscript.

Corresponding authors

Correspondence to Wenying Zhang or Shuzhen Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yang, Q., Dong, X. et al. Transcriptome analysis of flower color variation in five Rhododendron species (Ericaceae). Braz. J. Bot 44, 685–695 (2021). https://doi.org/10.1007/s40415-021-00720-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-021-00720-0

Keywords

Navigation