Skip to main content

Advertisement

Log in

Effects of ocean acidification on growth, pigment contents and antioxidant potential of the subtropical Atlantic red alga Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira (Gigartinales) in laboratory

  • Biochemistry & Physiology - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Marine ecosystems are subject to several modifications due to anthropogenic impacts, including ocean acidification caused by the absorption of excessive CO2 present in the atmosphere. Perspectives are for dramatic modifications in seawater pH and more than 60% of the ocean surface impacted over the next 100 years by global change. In this study, ocean acidification scenarios were simulated by CO2 enrichment into seawater in three pH levels (8.0, 7.6 and 7.2) using a bioreactor system in laboratory conditions. Experimental evaluation was performed with Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira due to its great importance in coastal marine ecosystems for primary production and commercial interest. Contrary to our initial hypothesis, the growth rate of H. pseudomusciformis decreased significantly with decreased pH conditions, even with increased availability of CO2. The maximum quantum yield and chlorophyll a content were also negatively affected by the pH reduction, while an increase in antioxidant activity was observed, indicating physiological stress. The physiological responses to decreased pH conditions reflect the importance of species-level studies and corroborate the changes caused by the ocean acidification on the macroalgal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhandari D, Rafq S, Gat Y, Gat P, Waghmare R, Kumar V (2020) A review on bioactive peptides: physiological functions, bioavailability and safety. Int J Pept Res Ther 26:139–150. https://doi.org/10.1007/s10989-019-09823-5

    Article  CAS  Google Scholar 

  • Bindoff NL, Cheung WWL, Kairo JG et al (2019) Changing ocean, marine ecosystems, and dependent communities. In: Pörtner H-O, Roberts DC, Masson-Delmotte V et al (eds) IPCC special report: the ocean and cryosphere in a changing climate, pp 447–587 (in press)

  • Björn LO (2015) Govindjee: The evolution of photosynthesis and its environmental impact. In: Björn LO (ed) Photobiology: the science of light and life. Springer, New York, pp 207–229

    Chapter  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss U-Technol 28:25–30

    Article  CAS  Google Scholar 

  • Brodie J, Williamson CJ, Smale DA, Kamenos NA, Mieszkowska N, Santos R, Cunliffe M, Steinke M et al (2014) The future of the northeast Atlantic benthic flora in a high CO2 world. Ecol Evol 4:2787–2798

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno JF, Sweatman WF, Precht ER, Selig and Schutte VGW, (2009) Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90:1478–1484

    Article  PubMed  Google Scholar 

  • Celis-Plá PSM, Hall-Spencer JM, Horta PA et al (2015) Macroalgal responses to ocean acidification depend on nutrient and light levels. Front Mar Sci 2:26. https://doi.org/10.3389/fmars.2015.00026

    Article  Google Scholar 

  • Chu WL (2011) Potential applications of antioxidant compounds derived from algae. Curr Top Nutraceut Res 9:83–98

    CAS  Google Scholar 

  • Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136

    Google Scholar 

  • Connell S, Russell B (2010) The direct effects of increasing CO2 and temperature on non-calcifying organisms: Increasing the potential for phase shifts in kelp forests. Proc R Soc B Biol Sci 277:1409–1415

    Article  Google Scholar 

  • Cornwall CE, Hurd CL (2020) Variability in the benefits of ocean acidification to photosynthetic rates of macroalgae without CO2-concentrating mechanisms. Mar Freshw Res 71:275–280. https://doi.org/10.1071/MF19134

    Article  CAS  Google Scholar 

  • Duarte B, Martins I, Rosa R et al (2018) Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Front Mar Sci. https://doi.org/10.3389/fmars.2018.00190

    Article  Google Scholar 

  • Edwards P (1970) Illustrated guide to the seaweeds and seagrass in the vicinity of Porto Aransas, Texas. Contributions to Marine Science, University of Texas, Austin

  • Enríquez S, Borowitzka MA (2011) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prásil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 187–208

    Google Scholar 

  • Figueroa FL, Salles S, Aguilera J, Jiménez C, Mercado J, Viñegla B, Flores A, Altamirano M (1997) Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta. Mar Ecol Prog Ser 151:81–90. https://doi.org/10.3354/meps151081

    Article  CAS  Google Scholar 

  • Gao K, Xu J, Gao G et al (2012) Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nat Clim Chang 2:519–523

    Article  CAS  Google Scholar 

  • Garcia-Sánchez MJ, Fernández JÁ, Niell X (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61

    Article  Google Scholar 

  • Gattuso JP, Epitalon JM, Lavigne H et al (2019) Seacarb: seawater carbonate chemistry R Package Version 3.2.10. https://CRAN.R-project.org/package=seacarb

  • Gordillo FJL, Carmona R, Viñegla B, Wiencke C, Jiménez C (2016) Effects of simultaneous increase in temperature and ocean acidification on biochemical composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard). Polar Biol 39:11

    Article  Google Scholar 

  • Gouvêa LP, Schubert N, Martins CDL et al (2017) Interactive effects of marine heatwaves and eutrophication on the ecophysiology of a widespread and ecologically important macroalga. Limnol Oceanogr 62:2056–2075. https://doi.org/10.1002/lno.10551

    Article  CAS  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kreamling K (1983) Methods of seawater analysis. Verlag Chemie, Weihein, p 419

    Google Scholar 

  • Guiry MD, Guiry GM (2020) AlgaeBase. Worldwide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 19 Jan 2020

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  CAS  PubMed  Google Scholar 

  • Ho M, Carpenter RC (2017) Differential growth responses to water flow and reduced pH in tropical marine macroalgae. J Exp Mar Bio Ecol 491:58–65. https://doi.org/10.1016/j.jembe.2017.03.009

    Article  CAS  Google Scholar 

  • Hoffman R (2014) Alien benthic algae and seagrasses in the mediterranean sea and their connection to global warming. In: Goffredo S, Dubinsky Z (eds) The mediterranean sea. Springer, Dordrecht

    Google Scholar 

  • Hurd CL, Beardall J, Comeau S et al (2020) Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Mar Freshw Res 71:263–274. https://doi.org/10.1071/MF19267

    Article  CAS  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 3–29

    Google Scholar 

  • IPCC (2019) IPCC special report on the ocean and cryosphere in a changing climate. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds) (in press)

  • Israel A, Katz S, Dubinsky Z, Merrill JE, Friedlander M (1999) Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J Appl Phycol 11:447–453

    Article  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equation for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Ji Y, Xu Z, Zou D, Gao K (2016) Ecophysiological responses of marine macroalgae to climate change factors. J Appl Phycol 28:2953–2967. https://doi.org/10.1007/s10811-016-0840-5

    Article  CAS  Google Scholar 

  • Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. Peer J 2014:1–28. https://doi.org/10.7717/peerj.411

    Article  CAS  Google Scholar 

  • Kim JH, Kang EJ, Edwards MS et al (2016) Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study. Algae 31:243–256. https://doi.org/10.4490/algae.2016.31.8.20

    Article  CAS  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x

    Article  Google Scholar 

  • Kram SL, Price NN, Donham EM et al (2016) Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES J Mar Sci 73:693–703. https://doi.org/10.1093/icesjms/fsv168

    Article  Google Scholar 

  • Kumar SA, Brown L (2013) Seaweeds as potential therapeutic interventions for the metabolic syndrome. Rev Endocr Metab Disord 14:299–308. https://doi.org/10.1007/s11154-013-9254-8

    Article  CAS  PubMed  Google Scholar 

  • Kursar TA, Van Der Meer J, Alberte RS (1983) Light-harvesting system of the red alga Gracilaria tikvahiae. I. Biochemical analyses of pigment mutations. Plant Physiol 73:353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapointe BE (1981) The effects of light and nitrogen on growth, pigment content, and biochemical composition of Gracilaria folifera v. angustissima (Gigartinales, Rhodophyta). J Phycol 17:90–95. https://doi.org/10.1111/j.1529-8817.1981.tb00823.x

    Article  CAS  Google Scholar 

  • McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24

    Article  PubMed  PubMed Central  Google Scholar 

  • McCoy SJ, Ragazzola F (2014) Skeletal trade-offs in response to ocean acidification. Nat Clim Change 4:719–723

    Article  CAS  Google Scholar 

  • McCoy SJ, Santillán-Sarmiento A, Brown MT, Widdicombe S, Wheeler GL (2020) Photosynthetic responses of turf-forming red macroalgae to high CO2 conditions. J Phycol 56:85–96. https://doi.org/10.1111/jpy.12922

    Article  CAS  PubMed  Google Scholar 

  • Mercado JM, Gordillo FJ, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461

    Article  Google Scholar 

  • Millero F, Sohn ML (1992) Chemical oceanography. CRC Press , Boca Raton, p 531

    Google Scholar 

  • Nagano CS, Moreno FBMB, Bloch C, Prates MV, Calvete JJ, Saker-Sampaio S, Farias WRL, Tavares TD, Nascimento KS, Grangeiro TB, Cavada BS, Sampaio AH (2002) Purification and characterization of lectins from the red marine alga Hypnea musciformis. Protein Peptide Lett 9:159–165

    Article  CAS  Google Scholar 

  • Nauer F, Jesus PB, Cassano V et al (2019) A taxonomic review of the genus Hypnea (Gigartinales, Rhodophyta) in Brazil based on DNA barcode and morphology. Braz J Bot 42:561–574

    Article  Google Scholar 

  • Neushul M (1990) Antiviral carbohydrates from marine red algae. Hidrobiologia 204(205):99–104

    Article  Google Scholar 

  • Nunes J, McCoy SJ, Findlay HS, Hopkins FE, Kitidis V, Queirós AM, Rayner L, Widdicombe S (2016) Two intertidal, non-calcifying macroalgae (Palmaria palmata and Saccharina latissima) show complex and variable responses to short-term CO2 acidification. J Mar Sci 73:887–896

    Google Scholar 

  • Oliveira EC (1998) The seaweed resources of Brazil. In: Crithcley AT, Ohno M (eds) Seaweeds resources of the world. Japan International Cooperation Agency, Yokosuka, pp 366–371

    Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    Article  Google Scholar 

  • Pajusalu L, Albert G, Fachon E et al (2020) Ocean acidification may threaten a unique seaweed community and associated industry in the Baltic Sea. J Appl Phycol 32:2469–2478

    Article  CAS  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  • Pires J, Torres PB, Santos DYAC, Chow F (2017) Ensaio em microplaca do potencial antioxidante através do método de sequestro do radical livre DPPH para extratos de algas. Instituto de Biociências, Universidade de São Paulo, São Paulo

    Google Scholar 

  • Plastino EM, Guimarães M (2001) Diversidade intraespecífica. In: Alveal K, Antezana T (eds) Sustentabilidad de la biodiversidad, un problema actual. Bases cientifico-tecnicas, teorizaciones y proyecciones. Universidad de Concepción, Concepción, pp 19–27

    Google Scholar 

  • Ragazzola F, Foster LC, Form A, Anderson PS, Hansteen TH, Fietzke J (2012) Ocean acidification weakens the structural integrity of coralline algae. Glob Change Biol 18:2804–2812

    Article  Google Scholar 

  • Rathinam A, Maharshi B, Janardhanan SK, Jonnalagadda R, Nair BU (2010) Biosorption of cadmium metal ion from simulated wastewater using Hypnea valentiae biomass: a kinetic and thermodynamic study. J Bioresour Tech 101:1466–1470

    Article  CAS  Google Scholar 

  • Raven JA, Caldeira K, Elderfield H et al (2005) Ocean Acidification due to increasing atmospheric carbon dioxide. Policy document 12/05. The Royal Society, London

  • Reis RP, Caldeira AQ, Miranda APS, Barros-Barreto MA (2006) Potencial para maricultura da carragenófita Hypnea musciformis (Wulfen) J.V. Lamour. (Gigartinales–Rhodophyta) na Ilha da Marambaia, Baía de Sepetiba, RJ, Brasil. Acta Bot Bras 20:763–769

    Article  Google Scholar 

  • Ribeiro ALNL, Tesima KE, Souza JMC, Yokoya NS (2013) Effects of nitrogen and phosphorus availabilities on growth, pigment and protein contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). J Appl Phycol 25:1151–1157

    Article  CAS  Google Scholar 

  • Scherner F, Pereira CM, Duarte G et al (2016) Effects of ocean acidification and temperature increases on the photosynthesis of tropical reef calcified macroalgae. PLoS ONE 11:1–14. https://doi.org/10.1371/journal.pone.0154844

    Article  CAS  Google Scholar 

  • Schneider G, Horta PA, Calderon EN et al (2018) Structural and physiological responses of Halodule wrightii to ocean acidification. Protoplasma 255:629–641. https://doi.org/10.1007/s00709-017-1176-y

    Article  CAS  PubMed  Google Scholar 

  • Suárez-Álvarez S, Gómez-Pinchetti JL, García-Reina G (2012) Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). J Appl Phycol 24:815–823. https://doi.org/10.1007/s10811-011-9700-5

    Article  CAS  Google Scholar 

  • Suggett DJ, Prásil O, Borowitzka MA (eds) (2011) Chlorophyll a fluorescence in aquatic sciences. Springer, Dordrecht

    Google Scholar 

  • Talarico L (1996) Phycobiliproteins and phycobilisomes in red algae adaptative responses to light. Sci Mar 60:205–222

    CAS  Google Scholar 

  • Ursi S, Plastino EM (2001) Crescimento in vitro de linhagens de coloração vermelha e verde clara de Gracilaria birdiae (Gracilariales, Rhodophyta) em dois meios de cultura: análise de diferentes estádios reprodutivos. Rev Bras Bot 24:587–594

    Article  Google Scholar 

  • Yokoya NS (2000) Apical callus formation and plant regeneration controlled by plant growth regulators on axenic culture of the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Phycol Res 48:133–142

    Article  CAS  Google Scholar 

  • Yokoya NS, Nauer F, Oliveira MC (2020) Concise review of the genus Hypnea J.V. Lamouroux, 1813. J Appl Phycol 32:3585–3603

    Article  Google Scholar 

  • Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2018/11445-7) and partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, and CAPES/AUXPE-CIMAR 1991/2014, Proc. no. 23038.001431/2014-75). NSY and MTF thank to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/BR) for the Productivity Fellowship (310672/2016-3 and 304899/2017-8, respectively). We thank Valdilene Maria dos Santos for technical support. We also thank Prof. Dr. Estela M. Plastino and Prof. Dr. Fungyi Chow, from Institute of Bioscience of University of São Paulo, for letting us use the Diving-PAM and Epoch.  

Author information

Authors and Affiliations

Authors

Contributions

F.N. and H.D.S.B. wrote the manuscript and prepared figures, tables and references. F.N., H.D.S.B. and N.S.Y. conceptualized the overall structure; N.S.Y. and M.T.F. reviewed the manuscript. M.T.F. contributed critical comments to the draft and approved the manuscript. All the authors reviewed the manuscript versions before their submission.

Corresponding author

Correspondence to Fabio Nauer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nauer, F., Borburema, H.D.S., Yokoya, N.S. et al. Effects of ocean acidification on growth, pigment contents and antioxidant potential of the subtropical Atlantic red alga Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira (Gigartinales) in laboratory. Braz. J. Bot 44, 69–77 (2021). https://doi.org/10.1007/s40415-020-00693-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-020-00693-6

Keywords

Navigation