Skip to main content

Advertisement

Log in

Dispersal increases beta diversity in periphytic algae communities of subtropical floodplain lakes

  • Ecology & Biogeography - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Biological traits related to the adherence strategy of periphytic algae determine species’ dispersal ability and the degree of protection against physical disturbance, such as strong currents and flood pulse. To help understand how water level can structure species with distinct adherence strategy in a floodplain, we investigated periphytic algal beta diversity in subtropical floodplain lakes (upper Paraná river floodplain) and evaluate the importance of environmental and spatial drivers in groups with limited dispersal and with higher dispersal abilities. The beta diversity was analyzed considering both presence–absence and species density. We used variance partitioning to evaluate the importance of environmental and spatial processes on periphytic algae. Our results registered 181 species, and the class Bacillariophyceae presented the highest species richness and density. Beta diversity did not differ between months with distinct water levels but differed among lakes. Set of species with higher dispersal abilities presented higher values of beta diversity. Environmental variables were the main driver of periphytic algae composition and density, but spatial variables also drive a significant amount of differences in species composition and density. Beta diversity of species with limited dispersal abilities was mainly driven by environmental factors, and no driver was important to species with higher dispersal. The results of beta diversity indicated that nearest lakes may be more environmentally similar that allows the same species to survive, and also allows species to disperse better among them. These results highlight that the inclusion of functional aspects can clarify the understanding of beta diversity patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agostinho AA, Thomaz SM, Gomes LC (2004) Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol Hydrobiol 4:255–256

    Google Scholar 

  • Algarte VM, Moresco C, Rodrigues L (2006) Algas do perifíton de distintos ambientes na planìcie de inundação do alto rio Paraná. Acta Sci Biol Sci 28:243–251. https://doi.org/10.4025/actascibiolsci.v28i3.216

    Article  Google Scholar 

  • Algarte V, Siqueira N, Murakami E, Rodrigues L (2009) Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. Braz J Biol 69:609–616. https://doi.org/10.1590/s1519-69842009000300015

    Article  CAS  PubMed  Google Scholar 

  • Algarte VM, Rodrigues L, Landeiro VL, Siqueira T, Bini LM (2014) Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722:279–290

    Article  Google Scholar 

  • Algarte VM, Siqueira NS, Ruwer DT, Osório NC, Rodrigues L (2017a) Richness of periphytic algae and its relationship with hydrological attributes. Braz J Bot 40:1–6

    Article  Google Scholar 

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of Cyanophytes, 3: Oscillatoriales. Algol Stud 80:327–472

    Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693

    Article  PubMed  Google Scholar 

  • Astorga A, Oksanen J, Luoto M, Soininen J, Virtanen R, Muotka T (2012) Distance decay of similarity in freshwater communities: do macro- and microorganisms follow the same rules? Global Ecol Biogeogr 21:365–375

    Article  Google Scholar 

  • Astorga A, Death R, Death F, Paavola R, Chakraborty M, Muotka T (2014) Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecol Evol 4:2693–2702

    Article  PubMed  PubMed Central  Google Scholar 

  • Barwell LJ, Isaac NJB, Kunin WE (2015) Measuring β-diversity with species abundance data. J Anim Ecol 84:1112–1122. https://doi.org/10.1111/1365-2656.12362

    Article  PubMed  PubMed Central  Google Scholar 

  • Benone NL, Ligeiro R, Juen L, Montag LFA (2018) Role of environmental and spatial processes structuring fish assemblages in streams of the eastern Amazon. Mar Freshw Res 69:243–252. https://doi.org/10.1071/MF17103

    Article  Google Scholar 

  • Bicudo CEM, Menezes M (2006) Gêneros de algas de águas continentais do Brasil: chaves para identificação e descrições. RiMa, São Carlos

    Google Scholar 

  • Biggs BJF, Stevenson RJ, Lowe RL (1998) A habitat matrix conceptual model for stream periphyton. Arch Hydrobiol 143:21–56

    Article  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. https://doi.org/10.1016/j.catena.2016.01.006

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. https://doi.org/10.2307/1940179

    Article  Google Scholar 

  • Bozelli RL, Thomaz SM, Padial AA, Lopes PM, Bini LM (2015) Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753:233–241

    Article  CAS  Google Scholar 

  • Chase JM, Amarasekare P, Cottenie K, Gonzalez A, Holt RD, Holyoak M, Hoopes MF, Leibold MA, Loreau M, Mouquet N, Shurin JB, Tilman D (2005) Competing theories for competitive metacommunities. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. The University of Chicago Press, Chicago, pp 335–354

    Google Scholar 

  • Condit R (2002) Beta-diversity in tropical forest trees. Science (80-) 295:666–669. https://doi.org/10.1126/science.1066854

    Article  CAS  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait dis-tributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Death RG (2010) Disturbance and riverine benthic communities: what has it con-tributed to general ecological theory? River Res Appl 26:15–25

    Article  Google Scholar 

  • Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04

    Article  Google Scholar 

  • Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82:257–275

    Article  Google Scholar 

  • Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G, Legendre P, Madi N, Wagner HH (2019) Multivariate multiscale spatial analysis. R package version 0.3–7

  • Dunck B, Algarte VM, Cianciaruso MV, Rodrigues L (2016) Functional diversity and trait–environment relationships of periphytic algae in subtropical floodplain lakes. Ecol Indic 67:257–266

    Article  Google Scholar 

  • Dunck B, Amaral DC, Fernandes UL, Santana NF, Lopes TM, Rodrigues L (2018) Herbivory effects on the periphytic algal functional diversity in lake ecosystems: an experimental approach. Hydrobiologia 816:231–241

    Article  Google Scholar 

  • Dunck B, Felisberto SA, Nogueira IS (2019) Effects of freshwater eutrophication on species and functional beta diversity of periphytic algae. Hydrobiologia 837:195–204. https://doi.org/10.1007/s10750-019-03971-x

    Article  Google Scholar 

  • Ferragut C, Bicudo DC (2009) Efeito de diferentes níveis de enriquecimento por fósforo sobre a estrutura da comunidade Perifítica em represa oligotrófica tropical (São Paulo, Brasil). Braz J Biol 32:571–585

    Google Scholar 

  • Fischer MM (2019) Quantifying the uncertainty of variance partitioning estimates of ecological datasets. Environ Ecol Stat 26:351–366

    Article  CAS  Google Scholar 

  • Ferragut C, Bicudo DC (2012) Effect of N and P enrichment on periphytic algal community succession in a tropical oligotrophic reservoir. Limnology 13:131–141

    Article  Google Scholar 

  • Fonseca IA, Rodrigues L (2005) Comunidade de algas perifíticas em distintos ambientes da planície de inundação do alto rio Paraná. Acta Sci Biol Sci 27:21–28. https://doi.org/10.4025/actascibiolsci.v27i1.1354

    Article  Google Scholar 

  • Graham LE, Graham JM, Wilcox LW, Cook ME (2016) Algae, 3rd edn. LJLM Press, LLC, Madison

    Google Scholar 

  • Heino J, Melo AS, Tadeu S, Soininen J, Valanko S, Bini LM (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869

    Article  Google Scholar 

  • Jamoneau A, Passy SI, Soininen J et al (2018) Beta diversity of diatom species and ecological guilds: response to environmental and spatial mechanisms along the stream watercourse. Freshw Biol 63:62–73. https://doi.org/10.1111/fwb.12980

    Article  Google Scholar 

  • Junk WJ, Wantzen KM (2004) The flood pulse concept: new aspects, approaches,and applications—an update. In: Welcomme R, Petr T (eds) Proceedings of the 2nd large river symposium (LARS). RAP Publication, Bangkok, pp 117–149

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72:367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (1989) Modern approach to the classification system of Cyanophytes, 4: Nostocales. Algol Stud 82:247–345

    Google Scholar 

  • Lange K, Townsend CR, Matthaei CD (2015) A traitbased framework for stream algal communities. Ecol Evol. https://doi.org/10.1002/ece3.1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Legendre P, Bocard D, Peres-Neto PR (2005) Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol Monogr 75:435–450

    Article  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491

    Article  PubMed  Google Scholar 

  • Mackereth FYH, Heron JG, Talling J (1978) Water analysis: some revised methods for limnologist. Freshw Biol Assoc 36:1–120

    Google Scholar 

  • Montag LFA, Winemiller KO, Keppeler FW, Leão H, Benone NL, Torres NR, Prudente BS, Begot TO, Bower LM, Saenz DE, Lopez-Delgado EO, Quintana Y, Hoeinghaus DJ, June L (2018) Land cover, riparian zones and instream habitat influence stream fish assemblages in the eastern Amazon. Ecol Freshw Fish 00:1–13

    Google Scholar 

  • Oksanen JF, Blanchet G, Kindt R, Legendre P, Minchin PR, O´Hara RB, Simpson GL, Solymos MP, Stevens HH, Wagner H (2013) Vegan: community ecology package. R package version 2.0–9. http://cran.r-project.org/package=vegan

  • Padial AA, Ceschin F, Declerck SAJ, De Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues L, Rodrigues LC, Train S, Velho LFM, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9:e111227

    Article  PubMed  PubMed Central  Google Scholar 

  • Passy S, Blanchet FG (2007) Algal communities in human-impacted stream ecosystems suffer beta diversity decline. Divers Distrib 13:670–679

    Article  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation Partitioning of Species Data Matrices: Estimation and Comparison of Fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Petsch DK, Schneck F, Melo A (2017) Substratum simplification reduces beta diversity of stream algal communities. Freshw Biol 62:205–213. https://doi.org/10.1111/fwb.12863

    Article  CAS  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/. Accessed 11 Nov 2017

  • Roberto MC, Santana NF, Thomaz SM (2009) Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz J Biol 69:717–725

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Algarte VM, Siqueira NS, Machado EMN (2013) Fatores envolvidos na distribuição e abundância do perifíton e principais padrões encontrados em ambientes da planície de inundação. In: Schwarzbold A, Burliga AL, Torgan LC (eds) Ecologia do Perifíton. RiMA, Sao Carlos, pp 131–145

    Google Scholar 

  • Ros J (1979) Práticas de ecologia. Barcelona: Ed. Omega, p 181

  • Round FE (1971) The taxonomy of the Chlorophyta, 2. J Br Phycol Soc 6:235–264

    Article  Google Scholar 

  • Schwarzbold A (1990) Métodos ecológicos aplicados ao estudo do perifíton. Acta Limnol Bras 3:545–592

    Google Scholar 

  • Sládecková A, Sládecek V (1977) Periphyton as indicator of the reservoir water quality II—pseudo-periphyton. Arch Hydrobiol 19:176–191

    Google Scholar 

  • Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12. https://doi.org/10.1111/j.0906-7590.2007.04817.x

    Article  Google Scholar 

  • Souza Filho EE, Stevaux JC (1997) Geologia e geomorfologia do complexo rio Baia, Curutuba, Ivinheima. In: Vazzoler AEAM, Agostinho AA, Hahn NS (eds) A Planície de Inundação do Alto Rio Paraná. EDUEM NUPÉLIA, Maringá, p 460

    Google Scholar 

  • Stegen J, Freestone A, Crist T, Anderson M, Chase J, Comita L, Cornell H, Davies K, Harrison S, Hurlbert A, Inouye B, Kraft N, Myers J, Sanders N, Swenson N, Vellend M (2013) Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob Ecol Biogeogr 22:202–212

    Article  Google Scholar 

  • Stevenson RJ (1996) An introduction to algae ecology in freshwater benthic habi-tats. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology. Academic Press, San Diego, pp 3–30

    Chapter  Google Scholar 

  • Tapolczai K, Bouchez A, Stenger-Kovács C, Padisák J, Rimet F (2016) Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia 776:1–17

    Article  Google Scholar 

  • Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1–13. https://doi.org/10.1007/s10750-006-0285-y

    Article  Google Scholar 

  • Utermӧhl H (1958) Zur Vervollkommnung der quantitative phytoplankton-methodic. Mitt Int Ver Theor Angew Limnol 9:1–38

    Google Scholar 

  • Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S (2011) Advances, challenges and a developing synthesis of ecological community assembly theory. Philos Trans R Soc Lond B Biol Sci 366:2403–2413

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetzel CE, de Bicudo DC, Ector L et al (2012) Distance decay of similarity in neotropical diatom communities. PLoS One 7:10–11. https://doi.org/10.1371/journal.pone.0045071

    Article  CAS  Google Scholar 

  • Xiao LJ, Wang T, Hu R et al (2011) Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res 45:5099–5109. https://doi.org/10.1016/j.watres.2011.07.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for granting K. L. Adame with a master scholarship, B. Dunck with a postdoctoral scholarship during the study development, and L. Colares also thanks to the Coordination for the Improvement of Higher Education Personnel (CAPES) for granting current master scholarships. We also thank the National Council for Scientific and Technological Development (CNPq) for granting L. Rodrigues with productivity support; the LongTerm Ecological Research (CNPq-PELD-Brazil) and the Research Center in Limnology, Ichthyology, and Aquaculture (Nupélia) for technical and logistical support during the conduction of this study.

Author information

Authors and Affiliations

Authors

Contributions

KLA and LR contributed to the study conception and design. KLA quantified the biological material. KLA, BD, and LC analyzed the results and wrote the manuscript. All authors reviewed and complemented the paper.

Corresponding author

Correspondence to Bárbara Dunck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 28 kb)

Supplementary material 2 (DOCX 941 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adame, K.L., Colares, L., Rodrigues, L. et al. Dispersal increases beta diversity in periphytic algae communities of subtropical floodplain lakes. Braz. J. Bot 44, 273–285 (2021). https://doi.org/10.1007/s40415-020-00688-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-020-00688-3

Keywords

Navigation