Skip to main content

Advertisement

Log in

Mycorrhizal influence on the growth and bioactive compounds composition of two medicinal plants: Mikania glomerata Spreng. and Mikania laevigata Sch. Bip. ex Baker (Asteraceae)

  • Short Communication
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhiza (AM) is one of the most ubiquitous plant symbioses, contributing to overall plant performance through nutritional and non-nutritional benefits. As result of mycorrhization, the active compounds derived from plants may be altered both quantitatively and qualitatively. The species Mikania glomerata Spreng. and Mikania laevigata Sch. Bip. ex Baker popularly called guaco, are widely distributed in the Americas and commonly cultivated as a popular remedy for respiratory diseases. The aim of this study was to evaluate the response of M. laevigata and M. glomerata to the inoculation of the AM fungus Rhizophagus irregularis (Blaszk., Wubet, Renker & Buscot) in terms of biomass and bioactive compound accumulation. Both species showed high colonization rates, which, in general, resulted in discrete effects on biomass production, whereas no growth-promoting effect was observed in M. glomerata; AM significantly increased foliar biomass production in M. laevigata. AM increased foliar P, K, Cu, Zn, and B concentrations in M. glomerata, and in M. laevigata, AM caused higher foliar Mg and lower Fe contents. Mycorrhization altered the contents of the bioactive compounds analyzed in a different manner for each species. Leaves of AM M. laevigata plants showed contents of the diterpene kaurenoic acid four times higher, suggesting an induction of terpenoid biosynthetic pathways. In M. glomerata, AM symbiosis reduced the contents of tricaffeoylquinic acids. This is, we believe, the first report showing the response of these species to mycorrhization and its influence on growth, mineral nutrition, and foliar contents of chemicals with bioactive properties, which are of increasing interest in pharmacological and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Almeida CL, Xavier RM, Borghi AA, dos Santos VF, Sawaya ACHF (2017) Effect of seasonality and growth conditions on the content of coumarin, chlorogenic acid and dicaffeoylquinic acids in Mikania laevigata Schultz and Mikania glomerata Sprengel (Asteraceae) by UHPLC–MS/MS. Int J Mass Spectrom 418:162–172

    Article  Google Scholar 

  • Andrade SAL, Malik S, Sawaya ACHF et al (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880. https://doi.org/10.1007/s11738-012-1130-8

    Article  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  • Asensio D, Rapparini F, Peñuelas J (2012) AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry 77:149–161

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Schädler M, Elias JD et al (2016) Friend or Foe—light availability determines the relationship between mycorrhizal fungi, rhizobia and lima bean (Phaseolus lunatus L.). PLoS ONE 11:e0154116. https://doi.org/10.1371/journal.pone.0154116

    Article  PubMed  PubMed Central  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515. https://doi.org/10.1021/jf200501c

    Article  CAS  PubMed  Google Scholar 

  • Baslam M, Esteban R, García-Plazaola JI, Goicoechea N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97:3119–3128. https://doi.org/10.1007/s00253-012-4526-x

    Article  CAS  PubMed  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 1149–1178

    Google Scholar 

  • Cakmak I, Yazici AM (2010) Magnesium: a forgotten element in crop production. Better Crop 94:23–25

    Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L et al (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323. https://doi.org/10.1007/s11104-010-0417-z

    Article  CAS  Google Scholar 

  • Chagas-Paula D, Oliveira T, Faleiro D (2015) Outstanding anti-inflammatory potential of selected asteraceae species through the potent dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. Planta Med 81:1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491. https://doi.org/10.1016/j.tplants.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    Article  CAS  PubMed  Google Scholar 

  • de Andrade SAL, Domingues AP, Mazzafera P (2015) Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress. Chemosphere 134:141–149. https://doi.org/10.1016/j.chemosphere.2015.04.023

    Article  PubMed  Google Scholar 

  • de Melo LV, Sawaya ACHF (2015) UHPLC–MS quantification of coumarin and chlorogenic acid in extracts of the medicinal plants known as guaco (Mikania glomerata and Mikania laevigata). Rev Bras Farmacogn 25:105–110. https://doi.org/10.1016/j.bjp.2015.02.005

    Article  Google Scholar 

  • Gasparetto JC, Campos FR, Budel JM, Pontarolo R (2010) Mikania glomerata Spreng. e M. laevigata Sch. Bip. ex Baker, Asteraceae: estudos agronômicos, genéticos, morfoanatômicos, químicos, farmacológicos, toxicológicos e uso nos programas de fitoterapia do Brasil. Rev Bras Farmacogn 20:627–640. https://doi.org/10.1590/S0102-695X2010000400025

    Article  Google Scholar 

  • Gasparetto JC, Peccinini RG, de Francisco TMG et al (2015) A kinetic study of the main guaco metabolites using syrup formulation and the identification of an alternative route of coumarin metabolism in humans. PLoS ONE 10:e0118922. https://doi.org/10.1371/journal.pone.0118922

    Article  PubMed  PubMed Central  Google Scholar 

  • Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    Article  PubMed  Google Scholar 

  • Grace SC, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc Lond B Biol Sci 355:1499–1510. https://doi.org/10.1098/rstb.2000.0710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart M, Reader R (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Hedden P (2016) Gibberellin biosynthesis in higher plants. Annu Plant Rev 49:37–72

    CAS  Google Scholar 

  • Jezek M, Geilfus C-M, Bayer A, Mühling K-H (2014) Photosynthetic capacity, nutrient status, and growth of maize (Zea mays L.) upon MgSO4 leaf-application. Front Plant Sci 5:781. https://doi.org/10.3389/fpls.2014.00781

    PubMed  Google Scholar 

  • Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Anand G, Gupta P, Mandal S (2016) Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochem Rev. https://doi.org/10.1007/s11101-016-9486-9

    Google Scholar 

  • Koltai H, Kapulnik Y (2010) Arbuscular mycorrhizas: physiology and function. Springer, Berlin

    Book  Google Scholar 

  • Li J, Xiao T, Zhang Q, Dong M (2013) Interactive effect of herbivory and competition on the invasive plant Mikania micrantha. PLoS ONE 8:e62608. https://doi.org/10.1371/journal.pone.0062608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Ráez JA, Verhage A, Fernandez I et al (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Upadhyay S, Wajid S et al (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345–357. https://doi.org/10.1007/s00572-014-0614-3

    Article  CAS  PubMed  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami H, Rejali F, Malakouti MJ (2009) Effects of soil compaction and arbuscular mycorrhiza on corn (Zea mays L.) nutrient uptake. Soil Tillage Res 103:282–290. https://doi.org/10.1016/j.still.2008.10.015

    Article  Google Scholar 

  • Moreira MR, Souza AB, Soares S et al (2016) ent-Kaurenoic acid-rich extract from Mikania glomerata: in vitro activity against bacteria responsible for dental caries. Fitoterapia 112:211–216. https://doi.org/10.1016/j.fitote.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Skiada V, Papadopoulou KK et al (2015) Effects of soil pH and arbuscular mycorrhiza (AM) inoculation on growth and chemical composition of chia (Salvia hispanica L.) leaves. Braz J Bot 38:487–495. https://doi.org/10.1007/s40415-015-0166-6

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Romero-Munar A, Fernández Del-Saz N, Ribas-Carbó M et al (2017) Arbuscular mycorrhizal symbiosis with Arundo donax decreases root respiration and increases both photosynthesis and plant biomass accumulation. Plant, Cell Environ. https://doi.org/10.1111/pce.12902

    Google Scholar 

  • Rozpądek P, Wężowicz K, Stojakowska A et al (2014) Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere 112:217–224. https://doi.org/10.1016/j.chemosphere.2014.04.023

    Article  PubMed  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM-fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798. https://doi.org/10.1017/S0953756205002832

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. https://doi.org/10.3852/16-042

    Article  PubMed  Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14. https://doi.org/10.1007/s00572-007-0147-0

    Article  PubMed  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    Article  CAS  Google Scholar 

  • Welling MT, Liu L, Rose TJ et al (2016) Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Plant Biol 18:552–562

    Article  CAS  PubMed  Google Scholar 

  • Zasoski RJ, Burau RG (1977) A rapid nitric-perchloric acid digestion method for multi-element tissue analysis. Commun Soil Sci Plant Anal 8:425–436

    Article  CAS  Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2011) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. P. Mazzafera (FAPESP 2008/58035-6) for use of the UPLC–MS equipment and CNPq (473597/2013-16) for financial support and Dr. VLG Rehder (CPQBA, UNICAMP) for the isolated grandifloric acid. CLA thanks FAPESP (2013/15962-2) for the scholarship. The authors thank Espaço da Escrita—Coordenadoria Geral da Universidade—UNICAMP—for the language services provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Adrián López de Andrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lazzari Almeida, C., Sawaya, A.C.H.F. & de Andrade, S.A.L. Mycorrhizal influence on the growth and bioactive compounds composition of two medicinal plants: Mikania glomerata Spreng. and Mikania laevigata Sch. Bip. ex Baker (Asteraceae). Braz. J. Bot 41, 233–240 (2018). https://doi.org/10.1007/s40415-017-0436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0436-6

Keywords

Navigation