Skip to main content
Log in

ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) plays important roles in plant stress response, especially in drought and chilling resistance. In order to reveal the relationship between ABA and chilling tolerance in rice (Oryza sativa L.), the chilling-sensitive cultivar ‘Longjing11’ (LJ11) and chilling-tolerant cultivar ‘Longdao5’ (LD5) were pretreated with different concentrations of ABA, and then their tolerance to low temperature was analyzed. The results showed that the yield, seed-setting rate, and pollen viability were significantly decreased in the sensitive cultivar LJ11 under chilling stress; however, there was no significant change in the tolerant cultivar LD5 comparing with the untreated control. The antioxidant enzyme activity and soluble sugar content of LD5 were higher than those of LJ11, while the malondialdehyde (MDA) content and relative electricity conductivity were found lower in LD5 than those in LJ11. Spraying 20 mg L−1 ABA can effectively alleviate the chilling damage and significantly increase the seed-setting rate of LJ11 under chilling stress. The superoxide dismutase, peroxidase, and catalase activities in the leaves were obviously increased at 2–4 days under low-temperature stress, but deceased rapidly after 5-day treatment. These results showed that proper pretreatment with ABA can increase the chilling tolerance in the chilling-sensitive rice cultivar through adjusting plants physiological characteristics such as ABA content, the activities of antioxidant enzymes, soluble sugar, and MDA content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CAT:

Catalase

LD5:

Longdao5

LJ11:

Longjing11

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

POD:

Peroxidase

SOD:

Superoxide dismutase

REC:

Relative electrical conductivity

References

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Almeida DM, Almadanim MC, Lourenco T, Abreu IA, Saibo NJ, Oliveira MM (2016) Screening for abiotic stress tolerance in rice: salt, cold, and drought. Method Mol Biol 1398:155–182

    Article  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Andaya VC, Mackill DJ (2003) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica x indica cross. Theor Appl Genet 106:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Wu J, Sheng WT, Zhou B, Zhou LJ, Zhuang W, Yao DP, Deng QY (2015) Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress. Int J Mol Sci 16:11398–11416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnecarrere V, Borsani O, Diaz P, Capdevielle F, Blanco P, Monza J (2011) Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci 180:726–732

    Article  CAS  PubMed  Google Scholar 

  • Chawade A, Lindlof A, Olsson B, Olsson O (2013) Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi. PLoS ONE 8:e81729

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia Y, Yun SJ, de los Reyes BG (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant Japonica rice. BMC Genom 8:175

    Article  Google Scholar 

  • Creelman RA, Mason HS, Bensen RJ, Boyer JS, Mullet JE (1990) Water deficit and abscisic acid cause differential inhibition of shoot versus root growth in soybean seedlings: analysis of growth, sugar accumulation, and gene expression. Plant Physiol 92:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Rio LA, Gomez M, Lopez-Gorge J (1977) Catalase and peroxidase activities, chlorophyll and proteins during storage of pea plants of chilling temperatures. Rev Esp Fisiol 33:143–148

    PubMed  Google Scholar 

  • Du H, Wu N, Chang Y, Li X, Xiao J, Xiong L (2013) Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol 83:475–488

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Aguilar GA, Fortiz J, Cruz R, Baez R, Wang CY (2000) Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit. J Agric Food Chem 48:515–519

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Aguilar GA, Tiznado-Hernandez ME, Zavaleta-Gatica R, Martinez-Tellez MA (2004) Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochem Biophys Res Commun 313:694–701

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    Article  CAS  PubMed  Google Scholar 

  • Kalapos B, Dobrev P, Nagy T, Vitamvas P, Gyorgyey J, Kocsy G, Marincs F, Galiba G (2016) Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat. Plant Sci 253:86–97

    Article  CAS  PubMed  Google Scholar 

  • Kasamo K, Yamaguchi M, Nakamura Y (2000) Mechanism of the chilling-induced decrease in proton pumping across the tonoplast of rice cells. Plant Cell Physiol 41:840–849

    Article  CAS  PubMed  Google Scholar 

  • Kelly JK, Rasch A, Kalisz S (2002) A method to estimate pollen viability from pollen size variation. Am J Bot 89:1021–1023

    Article  PubMed  Google Scholar 

  • Klingler JP, Batelli G, Zhu JK (2010) ABA receptors: the START of a new paradigm in phytohormone signalling. J Exp Bot 61:3199–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon C, Kim S, Kim D, Paek N (2015) The rice floral repressor Early flowering1 affects spikelet fertility by modulating gibberellin signaling. Rice 8:23

    Article  PubMed Central  Google Scholar 

  • Lee HJ, Back K (2016) 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J Pineal Res 61:303–316

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li W, Huang B, Cao X, Zhou X, Ye S, Li C, Gao F, Zou T, Xie K, Ren Y, Ai P, Tang Y, Li X, Deng Q, Wang S, Zheng A, Zhu J, Liu H, Wang L, Li P (2013) Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun 4:2793

    PubMed  Google Scholar 

  • Mamun EA, Alfred S, Cantrill LC, Overall RL, Sutton BG (2006) Effects of chilling on male gametophyte development in rice. Cell Biol Int 30:583–591

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto N, Steudle E, Hirasawa T, Lafitte R (2001) Hydraulic conductivity of rice roots. J Exp Bot 52:1835–1846

    Article  CAS  PubMed  Google Scholar 

  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167

    Article  CAS  PubMed  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Zhang H, Zhang D, Li J, Xiong H, Yu J, Li J, Rashid MA, Li G, Ma X, Cao G, Han L, Li Z (2015) Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLoS ONE 10:e0120590

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406

    Article  CAS  PubMed  Google Scholar 

  • Shinkawa R, Morishita A, Amikura K, Machida R, Murakawa H, Kuchitsu K, Ishikawa M (2013) Abscisic acid induced freezing tolerance in chilling-sensitive suspension cultures and seedlings of rice. BMC Res Notes 6:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang LF, Chen YY (2011) Photosynthetic characterization at different senescence stages in an early senescence mutant of rice Oryza sativa L. Photosynthetica 49:140–144

    Article  CAS  Google Scholar 

  • Wang Y, Wu Y, Duan C, Chen P, Li Q, Dai S, Sun L, Ji K, Sun Y, Xu W, Wang C, Luo H, Leng P (2012) The expression profiling of the CsPYL, CsPP2C and CsSnRK2 gene families during fruit development and drought stress in cucumber. J Plant Physiol 169:1874–1882

    Article  CAS  PubMed  Google Scholar 

  • Wang LF, Wang JK, An F, Xie GS (2016a) Molecular cloning and characterization of a stress responsive peroxidase gene HbPRX42 from rubber tree. Braz J Bot 39:475–483

    Article  Google Scholar 

  • Wang LZ, Wang LM, Xiang HT, Luo Y, Li R, Li ZJ, Wang CY, Meng Y (2016b) Relationship of photosynthetic efficiency and seed-setting rate in two contrasting rice cultivars under chilling stress. Photosynthetica 54:581–588

    Article  CAS  Google Scholar 

  • Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608

    Article  PubMed  Google Scholar 

  • Zhang Z, Zhang Q, Wu J, Zheng X, Zheng S, Sun X, Qiu Q, Lu T (2013) Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS ONE 8:e57472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yu H, Yang X, Li Q, Ling J, Wang H, Gu X, Huang S, Jiang W (2016) CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108:478–487

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Chen K, Mi X, Chen T, Ali J, Ye G, Xu J, Li Z (2015) Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS ONE 10:e0145704

    Article  PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Zentgraf U (2005) The correlation between oxidative stress and leaf senescence during plant development. Cell Mol Biol Lett 10:515–534

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell Environ 29:1049–1060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation Funded Project (2016M591563); Heilongjiang Province Government Postdoctoral Science Foundation Funded Project (LBH-Z15197); National Natural Science Foundation of China (31661143012); and Heilongjiang Academy of Agricultural Sciences Doctor Introduction Launch Scientific Research Projects (201507-07).

Author information

Authors and Affiliations

Authors

Contributions

XHT and WLZ conceived and designed the experiments. WTT, ZDF, FYJ, LY, LR, and LZJ performed the experiments. MY, LW, WLM, and YCJ analyzed the data. XHT and WLZ wrote the paper.

Corresponding author

Correspondence to Wang Lizhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongtao, X., Tongtong, W., Dianfeng, Z. et al. ABA pretreatment enhances the chilling tolerance of a chilling-sensitive rice cultivar. Braz. J. Bot 40, 853–860 (2017). https://doi.org/10.1007/s40415-017-0409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0409-9

Keywords

Navigation