Skip to main content
Log in

Are Aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and Perfluoroalkyl Substances (PFASs) into Plants?

  • Narrative Student Review
  • Published:
Springer Science Reviews

Abstract

Besides water and sunlight, plants and/or crops also require an assortment of dissimilar nutrients/elements to grow. Thus, some of these nutrients have been classified as essential or macronutrients, [e.g. calcium (Ca), magnesium (Mg) and sulphur (S)], for they facilitate plant growth; while others, such as copper (Cu), iron (Fe), zinc (Zn), etc., are considered as micronutrients. However, it is apparent now that plants are exposed to a variety of other chemical compounds, including a range of persistent organic pollutants (POPs) and perfluoroalkyl substances (PFASs), which have been found in several plants. Hence, it has been common knowledge that mechanisms, such as mass flow, diffusion, etc., facilitated by plant root systems, have allowed the translocation of these nutrients and pollutants into plants, although other researchers have argued that roots on their own cannot elucidate the dissemination of these chemical constituents into plants. This dissension remained until the discovery of aquaporins (AQPs), which ultimately led to numerous AQPs being identified in plants. Thus, the aim of this review is to present an overview on the progress made thus far in attempting to understand the possibility of these proteins (i.e. AQPs) being the gateway that conduits nutrients, POPs and PFASs into plants; however, the gathered evidence currently remains rudimentary and limited, suggesting that further research is required to elucidate plant AQPs involvement at this stage in POP transportation and storage in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [152]

Fig. 2

Adapted from [55]

Fig. 3
Fig. 4

Adapted from [161]

Fig. 5
Fig. 6

Adapted from [83] and [87]

Fig. 7

Similar content being viewed by others

References

  1. Agre P (2004) Aquaporin water channels (Nobel lecture). Angew Chem Int Edit 43:4278–4290

    Article  CAS  Google Scholar 

  2. Agre P, Saboori AM, Asimos A, Smith BL (1987) Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh (D) antigen. J Biol Chem 262:17497–17503

    CAS  PubMed  Google Scholar 

  3. Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol Renal 265:F461

    CAS  Google Scholar 

  4. Ahmad P, Azooz MM, Prasad MN (eds) (2012) Ecophysiology and responses of plants under salt stress. Springer, New York

    Google Scholar 

  5. Ahrens L (2009) Polyfluoroalkyl compounds in the marine environment—investigations on their distribution in surface water and temporal trends in harbor seals (Phoca vitulina). Environmental and Technology Studies. Dissertation, Phoca Vitulina University of Lüneburg

  6. Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  7. Ali MH, Al-Qahtani KM (2012) Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt J Aquat Res 38:31–37

    Article  Google Scholar 

  8. AlKhader AM (2015) The impact of phosphorus fertilizers on heavy metals content of soils and vegetables grown on selected farms in Jordan. Agrotechnology. https://doi.org/10.4172/2168-9881.1000137

    Google Scholar 

  9. Alleva K, Chara O, Amodeo G (2012) Aquaporins: another piece in the osmotic puzzle. FEBS Lett 586:2991–2999

    Article  CAS  PubMed  Google Scholar 

  10. Anderberg HI, Kjellbom P, Johanson U (2012) Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Front Plant Sci 3:1–14

    Article  CAS  Google Scholar 

  11. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    Article  CAS  PubMed  Google Scholar 

  12. Ayadi M, Cavez D, Miled N, Chaumont F, Masmoudi K (2011) Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol Biochem 49:1029–1039

    Article  CAS  PubMed  Google Scholar 

  13. Azad AK, Ahmed J, Alum MA, Hasan MM, Ishikawa T, Sawa Y, Katsuhara M (2016) Genome-wide characterization of major intrinsic proteins in four grass plants and their non-aqua transport selectivity profiles with comparative perspective. PLoS ONE. https://doi.org/10.1371/journal.pone.0157735

    Google Scholar 

  14. Baiges I, Schäffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  CAS  PubMed  Google Scholar 

  15. Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23:S32–S44

    Article  CAS  PubMed  Google Scholar 

  16. Banaag JF (2012) Morphological, growth, and photosynthetic responses of cottonwood hybrid 47-174 (Populus trichocarpa x P. deltoides) to nitrogen fertilization and leaf rust infection. Dissertation, University of Washington

  17. Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition. CRC Press, Boca Raton

    Google Scholar 

  18. Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant-Microbe Interact 27:349–363

    Article  PubMed  CAS  Google Scholar 

  19. Battu RS, Sahoo SK, Jyot G (2009) Persistence of acephate and cypermethrin on cotton leaves, cottonseed, lint and soil. Bull Environ Contam Toxicol 82:124–128

    Article  CAS  PubMed  Google Scholar 

  20. Bellati J, Alleva K, Soto G, Vitali V, Jozefkowicz C, Amodeo G (2010) Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression. Plant Mol Biol 74:105–118

    Article  CAS  PubMed  Google Scholar 

  21. Benga G (2003) Birth of water channel proteins—the aquaporins. Cell Biol Int 27:701–709

    Article  CAS  PubMed  Google Scholar 

  22. Benga G (2009) Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life 61:112–133

    Article  CAS  PubMed  Google Scholar 

  23. Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570

    Article  CAS  PubMed  Google Scholar 

  24. Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317

    Article  CAS  PubMed  Google Scholar 

  25. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  26. Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As (OH) 3 and Sb (OH) 3 across membranes. BMC Biol 6:26. https://doi.org/10.1186/1741-7007-6-26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bienert GP, Cavez D, Besserer A, Berny MC, Gilis D, Rooman M, Chaumont F (2012) A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers. Biochem J 445:101–111

    Article  CAS  PubMed  Google Scholar 

  28. Blaine AC, Rich CD, Sedlacko EM, Hundal LS, Kumar K, Lau C, Mills MA, Harris KM, Higgins CP (2014) Perfluoroalkyl acid distribution in various plant compartments of edible crops grown in biosolids-amended soils. Environ Sci Technol 48:7858–7865

    Article  CAS  PubMed  Google Scholar 

  29. Blaine AC, Rich CD, Sedlacko EM, Hyland KC, Stushnoff C, Dickenson ER, Higgins CP (2014) Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water. Environ Sci Technol 48:14361–14368

    Article  CAS  PubMed  Google Scholar 

  30. Blaine AC, Rich CD, Hundal LS, Lau C, Mills MA, Harris KM, Higgins CP (2013) Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: field and greenhouse studies. Environ Sci Technol 47:14062–14069

    Article  CAS  PubMed  Google Scholar 

  31. Botkin DB, Keller EA (2012) Environmental science: earth as a living planet, 8th edn. Wiley, New York

    Google Scholar 

  32. Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. In: Beitz PDE (ed) Aquaporins. Springer, Berlin/Heidelberg, pp 3–28

    Chapter  Google Scholar 

  34. Cervilla LM, Blasco B, Rios JJ, Rosales MA, Sánchez-Rodríguez E, Rubio-Wilhelmi MM, Romero L, Ruiz JM (2012) Parameters symptomatic for boron toxicity in leaves of tomato plants. J Bot. https://doi.org/10.1155/2012/726206

    Google Scholar 

  35. Chandra R, Chaudhary S (2013) Persistent organic pollutants in environment and their health hazards. Int J Bioassays 2:1232–1238

    Google Scholar 

  36. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chavez E, He ZL, Stoffella PJ, Mylavarapu RS, Li YC, Moyano B, Baligar VC (2015) Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Sci Total Environ 533:205–214

    Article  CAS  PubMed  Google Scholar 

  39. Chen K, Fessehaie A, Arora R (2013) Aquaporin expression during seed osmopriming and post-priming germination in spinach. Biol Plant 57:193–198

    Article  CAS  Google Scholar 

  40. Cho CR, Lam NH, Cho BM, Kannan K, Cho HS (2015) Concentration and correlations of perfluoroalkyl substances in whole blood among subjects from three different geographical areas in Korea. Sci Total Environ 512:397–405

    Article  PubMed  CAS  Google Scholar 

  41. Collins C, Rose M, Fernandes A (2013) Uptake of organic pollutants and potentially toxic elements (PTEs) by crops. In: Fernandes A (ed) Rose M. Persistent organic pollutants and toxic metals in foods, Elsevier, pp 129–144

    Google Scholar 

  42. Da Ines O (2008) Functional analysis of PIP2 aquaporins in Arabidopsis thaliana. Doctoral dissertation, Ludwig-Maximilian University of Munich

  43. Danielson JÅ, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:48. https://doi.org/10.1186/1471-2229-8-45

    Article  CAS  Google Scholar 

  44. De La Torre-Roche R, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC (2013) Impact of Ag nanoparticle exposure on p, p′-DDE bioaccumulation by Cucurbita pepo (Zucchini) and Glycine max (Soybean). Environ Sci Technol 47:718–725

    Article  CAS  Google Scholar 

  45. del Mar Alguacil M, Kohler J, Caravaca F, Roldán A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–951

    Article  CAS  Google Scholar 

  46. Die Q, Nie Z, Yang Y, Tang Z, Huang Q (2015) Persistent organic pollutant waste in China: a review of past experiences and future challenges. J Mater Cycles Waste 17:434–441

    Article  CAS  Google Scholar 

  47. Direito I, Madeira A, Brito MA, Soveral G (2016) Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci 73:1623–1640

    Article  CAS  PubMed  Google Scholar 

  48. Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U (2008) Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem J 414:53–61

    Article  CAS  PubMed  Google Scholar 

  49. Environmental Protection Agency (EPA) (2016) Persistent organic pollutants: A global issue. A global response. https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response. Accessed 04 Nov 2016

  50. Environmental Protection Agency (EPA) (2017) Basic information about per- and polyfluoroalkyl substances (PFASs): includes information on perfluorooctanoic acid (PFOA), perfluorooctyl sulfonate (PFOS), and all other PFASs, and on PFCs. https://www.epa.gov/pfas/basic-information-about-and-polyfluoroalkyl-substances-pfass. Accessed 30 Oct 2017

  51. Ezigbo VO, Odinma SC (2015) Trace element analysis of some leafy and non leafy vegetable samples in Anam District of Aghamelum Anambra State of Nigeria. Int J Sci Technol 4:119–124

    Google Scholar 

  52. Finn RN, Chauvigné F, Hlidberg JB, Cutler CP, Cerdà J (2014) The lineage-specific evolution of aquaporin gene clusters facilitated tetrapod terrestrial adaptation. PLoS ONE 9:e113686

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fox AR, Maistriaux LC, Chaumont F (2017) Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. Plant Sci 264:179–187

    Article  CAS  PubMed  Google Scholar 

  54. Gerbeau P, Güçlü J, Ripoche P, Maurel C (1999) Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes. Plant J 18:577–587

    Article  CAS  PubMed  Google Scholar 

  55. Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 1788:1213–1228

    Article  CAS  PubMed  Google Scholar 

  56. Gu YG, Gao YP, Lin Q (2016) Contamination, bio-accessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Appl Geochem 67:52–58

    Article  CAS  Google Scholar 

  57. Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16:277–286

    Article  CAS  PubMed  Google Scholar 

  58. Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:1

    Article  CAS  Google Scholar 

  59. Hachez C, Heinen RB, Draye X, Chaumont F (2008) The expression pattern of plasma membrane aquaporins in maize leaf highlights their role in hydraulic regulation. Plant Mol Biol 68:337–353

    Article  CAS  PubMed  Google Scholar 

  60. Hachiya T, Watanabe CK, Fujimoto M, Ishikawa T, Takahara K, Kawai-Yamada M, Uchimiya H, Uesono Y, Terashima I, Noguchi K (2012) Nitrate addition alleviates ammonium toxicity without lessening ammonium accumulation, organic acid depletion and inorganic cation depletion in Arabidopsis thaliana shoots. Plant Cell Physiol 53:577–591

    Article  CAS  PubMed  Google Scholar 

  61. Hacke UG, Laur J (2016) Aquaporins: channels for the molecule of life. eLS: Plant Sci. https://doi.org/10.1002/9780470015902.a0001289.pub2

  62. Hedlund J (2016) Per- and polyfluoroalkyl substances (PFASs) in Swedish waters. Dissertation, Swedish University of Agricultural Sciences

  63. Heo JJ, Lee JW, Kim SK, Oh JE (2014) Foodstuff analyses show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea. J Hazard Mater 279:402–409

    Article  CAS  PubMed  Google Scholar 

  64. Hosoi K (2016) Physiological role of aquaporin 5 in salivary glands. Pflugers Arch 468:519–539

    Article  CAS  PubMed  Google Scholar 

  65. Huang H, Zhang S, Christie P, Wang S, Xie M (2009) Behavior of decabromodiphenyl ether (BDE-209) in the soil–plant system: uptake, translocation, and metabolism in plants and dissipation in soil. Environ Sci Technol 44:663–667

    Article  CAS  Google Scholar 

  66. Hub JS, De Groot BL (2008) Mechanism of selectivity in aquaporins and aquaglyceroporins. Proc Natl Acad Sci USA 105:1198–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, Higgins CP (2016) Detection of poly- and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett 3:344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hussain A, Alamzeb S, Begum S (2013) Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem 136:1515–1523

    Article  PubMed  CAS  Google Scholar 

  69. Hussain SS, Ahsan MA, Rashid B, Shi BJ (2016) Plant aquaporin biotechnology: challenges and prospects for abiotic stress tolerance under a changing global environment. In: Ahmad P, Rasool SP (eds) Water stress and crop plants: a sustainable approach, vol 2. Wiley, London, pp 151–164

    Google Scholar 

  70. Hwang JH, Ellingson SR, Roberts DM (2010) Ammonia permeability of the soybean nodulin 26 channel. FEBS Lett 584:4339–4343

    Article  CAS  PubMed  Google Scholar 

  71. Hyland KC, Blaine AC, Higgins CP (2015) Accumulation of contaminants of emerging concern in food crops—part 2: plant distribution. Environ Toxicol Chem 34:2222–2230

    Article  CAS  PubMed  Google Scholar 

  72. Hyland KC, Blaine AC, Dickenson ER, Higgins CP (2015) Accumulation of contaminants of emerging concern in food crops—part 1: edible strawberries and lettuce grown in reclaimed water. Environ Toxicol Chem 34:2213–2221

    Article  CAS  PubMed  Google Scholar 

  73. Jahn TP, Møller AL, Zeuthen T, Holm LM, Klærke DA, Mohsin B, Kühlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett 574:31–36

    Article  CAS  PubMed  Google Scholar 

  74. Jang JY, Rhee JY, Kim DG, Chung GC, Lee JH, Kang H (2007) Ectopic expression of a foreign aquaporin disrupts the natural expression patterns of endogenous aquaporin genes and alters plant responses to different stress conditions. Plant Cell Physiol 48:1331–1339

    Article  CAS  PubMed  Google Scholar 

  75. Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461

    Article  CAS  PubMed  Google Scholar 

  76. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jung JS, Preston GM, Smith BL, Guggino WB, Agre P (1994) Molecular structure of the water channel through aquaporin CHIP. The hourglass model. J Biol Chem 269:14648–14654

    CAS  PubMed  Google Scholar 

  79. Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochim Biophys Acta 1758:1134–1141

    Article  CAS  PubMed  Google Scholar 

  80. Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol 187:169–176

    Article  CAS  Google Scholar 

  81. Kaldenhoff R, Ribas-Carbo MI, Sans JF, Lovisolo C, Heckwolf M, Uehlein N (2008) Aquaporins and plant water balance. Plant Cell Environ 31:658–666

    Article  CAS  PubMed  Google Scholar 

  82. Kananke T, Wansapala J, Gunaratne A (2016) Detection of Ni, Cd, and Cu in green leafy vegetables collected from different cultivation areas in and around Colombo District, Sri Lanka. Environ Monit Assess 188:1–12

    Article  CAS  Google Scholar 

  83. Kaptan SS (2015) Regulation of permeation in aquaporins. Doctoral dissertation, Georg-August-Universität Göttingen

  84. Kelly G, Sade N, Attia Z, Secchi F, Zwieniecki M, Holbrook NM, Levi A, Alchanatis V, Moshelion M, Granot D (2014) Relationship between hexokinase and the aquaporin PIP1 in the regulation of photosynthesis and plant growth. PLoS ONE. https://doi.org/10.1371/journal.pone.0087888

    Google Scholar 

  85. Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC (2015) Beyond water homeostasis: diverse functional roles of mammalian aquaporins. Biochim Biophys Acta 1850:2410–2421

    Article  CAS  PubMed  Google Scholar 

  86. Kitchen P, Day RE, Taylor LH, Salman MM, Bill RM, Conner MT, Conner AC (2015) Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel. J Biol Chem 290:16873–16881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kirscht A, Kaptan SS, Bienert GP, Chaumont F, Nissen P, de Groot BL, Kjellbom P, Gourdon P, Johanson U (2016) Crystal structure of an ammonia-permeable aquaporin. PLoS Biol 14:e1002411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kissa E (2001) Fluorinated surfactants and repellents. Marcel Dekker, New York

    Google Scholar 

  89. Krafft MP, Riess JG (2015) Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—part one. Chemosphere 129:4–19

    Article  CAS  PubMed  Google Scholar 

  90. Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kukulski W (2006) Structure and function of aquaporins. Doctoral dissertation, University of Basel

  92. Kukulski W, Schenk AD, Johanson U, Braun T, De Groot BL, Fotiadis D, Kjellbom P, Engel A (2005) The 5 Å structure of heterologously expressed plant aquaporin SoPIP2;1. J Mol Biol 350:611–616

    Article  CAS  PubMed  Google Scholar 

  93. Lechner M, Knapp H (2011) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus). J Agric Food Chem 59:11011–11018

    Article  CAS  PubMed  Google Scholar 

  94. Lee SH, Chung GC, Zwiazek JJ (2009) Effects of irradiance on cell water relations in leaf bundle sheath cells of wild-type and transgenic tobacco (Nicotiana tabacum) plants overexpressing aquaporins. Plant Sci 176:248–255

    Article  CAS  Google Scholar 

  95. Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67:624–640

    Article  Google Scholar 

  96. Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582

    Article  CAS  PubMed  Google Scholar 

  97. Li T, Choi WG, Wallace IS, Baudry J, Roberts DM (2011) Arabidopsis thaliana NIP7; 1: an anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry 50:6633–6641

    Article  CAS  PubMed  Google Scholar 

  98. Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y, Iwasaki I (2013) Aquaporin OsPIP1; 1 promotes rice salt resistance and seed germination. Plant Physiol Biochem 63:151–158

    Article  CAS  PubMed  Google Scholar 

  99. Liu Z, Zhang Q, Han T, Ding Y, Sun J, Wang F, Zhu C (2015) Heavy metal pollution in a soil–rice system in the Yangtze river region of China. Int J Environ Res Public Health 13:63

    Article  PubMed Central  CAS  Google Scholar 

  100. Lopez D, Amira MB, Brown D, Muries B, Brunel-Michac N, Bourgerie S, Porcheron B, Lemoine R, Chrestin H, Mollison E, Di Cola A (2016) The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. Plant Mol Biol 91:375–396

    Article  CAS  PubMed  Google Scholar 

  101. Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie SY, Brignolas F, Carpin S, Tournaire-Roux C, Maurel C, Fumanal B, Martin F (2012) Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot 63:2217–2230

    Article  CAS  PubMed  Google Scholar 

  102. Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2; 1 and AtTIP2; 3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  104. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  105. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci USA 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Madeira A, Fernandez-Veledo S, Camps M, Zorzano A, Moura TF, Ceperuelo-Mallafre V, Vendrell J, Soveral G (2014) Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity (Silver Spring) 22:2010–2017

    Article  CAS  Google Scholar 

  107. Madeira A, Moura TF, Soveral G (2016) Detecting aquaporin function and regulation. Front Chem 4:3. https://doi.org/10.3389/fchem.2016.00003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mori IC, Rhee J, Shibasaka M, Sasano S, Kaneko T, Horie T, Katsuhara M (2014) CO2 transport by PIP2 aquaporins of barley. Plant Cell Physiol 55:251–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maeshima M (2001) Tonoplast transporters: organization and function. Annu Rev Plant Physiol Plant Mol Biol 52:469–497

    Article  CAS  PubMed  Google Scholar 

  110. Mahdieh M, Mostajeran A (2009) Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum. Plant Cell Physiol 166:1993–2003

    CAS  Google Scholar 

  111. Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  CAS  PubMed  Google Scholar 

  112. Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    Article  CAS  PubMed  Google Scholar 

  113. Maurel C, Chrispeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358

    Article  CAS  PubMed  Google Scholar 

  115. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ (1993) The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J 12:2241–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Maurel C, Santoni V, Luu DT, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Curr Opin Plant Biol 12:690–698

    Article  CAS  PubMed  Google Scholar 

  117. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  118. Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mitani N, Yamaji N, Ma JF (2008) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Morita S, Sugiyama S, Tateishi A, Satoh S (2016) Identification and characterization of plasma membrane intrinsic protein (PIP) aquaporin genes in petals of opening carnation flowers. Hort J. https://doi.org/10.2503/hortj.MI-127

    Google Scholar 

  121. Mudumbi JBN, Ntwampe SKO, Muganza M, Okonkwo JO (2014) Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation. Int J Phytoremediat 16:926–936

    Article  CAS  Google Scholar 

  122. Mudumbi JBN, Ntwampe SK, Matsha T, Mekuto L, Itoba-Tombo EF (2017) Recent developments in polyfluoroalkyl compounds research: a focus on human/environmental health impact, suggested substitutes and removal strategies. Environ Monit Assess 189:402

    Article  PubMed  CAS  Google Scholar 

  123. Mudumbi JBN (2013) Perfluorooctane sulfonate and perfluorooctanoate: contamination of riparian wetlands of the Eerste, Diep and Salt Rivers. Dissertation, Cape Peninsula University of Technology

  124. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  CAS  PubMed  Google Scholar 

  125. Navarro I, de la Torre A, Sanz P, Porcel MÁ, Pro J, Carbonell G, de los Ángeles Martínez M (2017) Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environ Res 152:199–206

    Article  CAS  PubMed  Google Scholar 

  126. Nguyen MX, Moon S, Jung KH (2013) Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta 238:669–681

    Article  CAS  PubMed  Google Scholar 

  127. Noronha H, Agasse A, Martins AP, Berny MC, Gomes D, Zarrouk O, Thiebaud P, Delrot S, Soveral G, Chaumont F, Gerós H (2014) The grape aquaporin VvSIP1 transports water across the ER membrane. J Exp Bot 65:981–993

    Article  CAS  PubMed  Google Scholar 

  128. Oliver MA, Gregory PJ (2015) Soil, food security and human health: a review. Eur J Soil Sci 66:257–276

    Article  Google Scholar 

  129. Otto B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N, Reinhard A (2010) Aquaporin tetramer composition modifies the function of tobacco aquaporins. J Biol Chem 285:31253–31260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pagani A, Sawyer EJ, Mallarino PA, Moody L, Davis J Phillips S (2013). Site-specific nutrient management: for nutrient management planning to improve crop production, environmental quality, and economic return. NRCS, NRCS 001 May 2013. http://www.agronext.iastate.edu/soilfertility/nutrienttopics/4r/Site-SpecificNutrientManagementPlanning_ver2.pdf. Accessed 11 May 2016

  131. Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BNC Plant Biol 10:1

    Google Scholar 

  132. Pelagalli A, Squillacioti C, Mirabella N, Meli R (2016) Aquaporins in health and disease: an overview focusing on the gut of different species. Int J Mol Sci 17:1213. https://doi.org/10.3390/ijms17081213

    Article  PubMed Central  CAS  Google Scholar 

  133. Pérez Di Giorgio J, Bienert GP, Ayub ND, Yaneff A, Barberini ML, Mecchia MA, Amodeo G, Soto GC, Muschietti JP (2016) Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for reproduction in Arabidopsis thaliana. Plant Cell 28:1053–1077

    Article  CAS  Google Scholar 

  134. Pérez Di Giorgio JA, Soto GC, Muschietti JP, Amodeo G (2016) Pollen aquaporins: the solute factor. Front Plant Sci 7:1659

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pérez Di Giorgio JP, Soto G, Alleva K, Jozefkowicz C, Amodeo G, Muschietti JP, Ayub ND (2014) Prediction of aquaporin functions by integrating evolutionary and functional analyses. J Membr Biol 247:107–125

    Article  PubMed  CAS  Google Scholar 

  136. Plewa MJ (1991) The role of plants in environmental toxicology. Illinois research Illinois Agricultural Experiment Station. http://www.aces.uiuc.edu/vista/html_pubs/irspsm91/plants.html. Accessed 14 May 2016

  137. Poothong S, Thomsen C, Haug LS, Lundanes E (2015) Evaluation of dried blood spots for determination of perfluoroalkyl substances in blood. J Anal Bioanal Tech 6:1

    Article  Google Scholar 

  138. Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    Article  CAS  PubMed  Google Scholar 

  139. Pou A, Medrano H, Flexas J, Tyerman SD (2013) A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering. Plant Cell Environ 36:828–843

    Article  CAS  PubMed  Google Scholar 

  140. Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2001) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:1

    Article  Google Scholar 

  141. Reddy PV, Kim KH (2015) A review of photochemical approaches for the treatment of a wide range of pesticides. J Hazard Mater 285:325–335

    Article  CAS  PubMed  Google Scholar 

  142. Regon P, Panda P, Kshetrimayum E, Panda SK (2014) Genome-wide comparative analysis of tonoplast intrinsic protein (TIP) genes in plants. Funct Integr Genomics 14:617–629

    Article  CAS  PubMed  Google Scholar 

  143. Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE. https://doi.org/10.1371/journal.pone.0079052

    Google Scholar 

  144. Rigét F, Vorkamp K, Bossi R, Sonne C, Letcher RJ, Dietz R (2015) Twenty years of monitoring of persistent organic pollutants in Greenland biota. A review. Environ Pollut. https://doi.org/10.1016/j.envpol.2015.11.006

    Google Scholar 

  145. Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661

    Article  CAS  PubMed  Google Scholar 

  146. Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30–39

    Article  CAS  PubMed  Google Scholar 

  147. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  148. Sassmann S (2010) Heavy metal tolerance and localization in the moss Physcomitrella patens. Dissertation, University of Vienna

  149. Senevirathna ST (2010) Development of effective removal methods of PFCs (perfluorinated compounds) in water by adsorption and coagulation. Dissertation, Kyoto University

  150. Sharma BM, Bharat GK, Tayal S, Nizzetto L, Čupr P, Larssen T (2014) Environment and human exposure to persistent organic pollutants (POPs) in India: a systematic review of recent and historical data. Environ Int 66:48–64

    Article  CAS  PubMed  Google Scholar 

  151. Shelden MC, Howitt SM, Kaiser BN, Tyerman SD (2009) Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol 36:1065–1078

    Article  CAS  Google Scholar 

  152. Shivaraj SM, Deshmukh RK, Rai R, Bélanger R, Agrawal PK, Dash PK (2017) Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 7:46137. https://doi.org/10.1038/srep46137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Soveral G, Nielsen S, Casini A (eds) (2016) Aquaporins in health and disease: new molecular targets for drug discovery. CRC Press, Boca Raton

    Google Scholar 

  154. Srivastava PK, Kiran GS, Gupta M, Sharma NK, Prasad KS (2012) A study on distribution of heavy metal contamination in the vegetables using GIS and analytical technique. Int J Ecol Dev 21:89–99

    Google Scholar 

  155. Stahl T, Heyn J, Thiele H, Hüther J, Failing K, Georgii S, Brunn H (2009) Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plants. Arch Environ Contam Toxicol 57:289–298

    Article  CAS  PubMed  Google Scholar 

  156. Sutka M, Amodeo G, Ozu M (2017) Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives? Biophys Rev 4:1–8

    Google Scholar 

  157. Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  158. Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Article  CAS  PubMed  Google Scholar 

  159. Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng Appl. https://doi.org/10.1155/2011/939161

    Google Scholar 

  161. Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  162. Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  CAS  PubMed  Google Scholar 

  163. Trejo N, Matus I, del Pozo A, Walter I, Hirzel J (2016) Cadmium phytoextraction capacity of white lupine (Lupinus albus L.) and narrow-leafed lupine (Lupinus angustifolius L.) in three contrasting agroclimatic conditions of Chile. Chil J Agric Res 76:228–235

    Article  Google Scholar 

  164. Tun KK, Shrestha RP, Datta A (2015) Assessment of land degradation and its impact on crop production in the Dry Zone of Myanmar. Int J Sust Dev World 22:533–544

    Article  Google Scholar 

  165. Tyerman SD, Vandeleur RK, Shelden MC, Tilbrook J, Mayo G, Gilliham M, Kaiser BN (2009) Water transport & aquaporins in grapevine. Grapevine molecular physiology & biotechnology. Springer, Netherlands, pp 73–104

    Chapter  Google Scholar 

  166. Uehlein N, Lovisolo C, Siefritz F, Kaldenhoff R (2003) The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature 425:734–737

    Article  CAS  PubMed  Google Scholar 

  167. Uehlein N, Otto B, Eilingsfeld A, Itel F, Meier W, Kaldenhoff R (2012) Gas-tight triblock-copolymer membranes are converted to CO2 permeable by insertion of plant aquaporins. Sci Rep 2:538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Vácha R, Skála J, Čechmánková J, Horváthová V, Hladík J (2015) Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. J Soils Sedim 15:1813–1824

    Article  CAS  Google Scholar 

  169. Vallero D (2015) Environmental biotechnology: a biosystems approach. Academic Press, Boston

    Google Scholar 

  170. Verdoucq L, Grondin A, Maurel C (2008) Structure–function analysis of plant aquaporin AtPIP2; 1 gating by divalent cations and protons. Biochem J. 415(3):409–416

    Article  CAS  PubMed  Google Scholar 

  171. Verkman AS (2013) Aquaporins. Curr Biol 23:R52–R55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nature Rev Drug Disc 13:259–277

    Article  CAS  Google Scholar 

  173. Wang J, Liu L, Wang J, Pan B, Fu X, Zhang G, Zhang L, Lin K (2015) Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China. Environ Sci Pollut Res 22:1020–1033

    Article  CAS  Google Scholar 

  174. Wang T, Wang Y, Liao C, Cai Y, Jiang G (2009) Perspectives on the inclusion of perfluorooctane sulfonate into the Stockholm convention on persistent organic pollutants 1. Environ Sci Technol 43:5171–5175

    Article  CAS  PubMed  Google Scholar 

  175. Wen B, Li L, Liu Y, Zhang H, Hu X, Shan XQ, Zhang S (2013) Mechanistic studies of perfluorooctane sulfonate, perfluorooctanoic acid uptake by maize (Zea mays L. cv. TY2). Plant Soil 370:345–354

    Article  CAS  Google Scholar 

  176. Wen B, Wu Y, Zhang H, Liu Y, Hu X, Huang H, Zhang S (2016) The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils. Environ Pollut 216:682–688

    Article  CAS  PubMed  Google Scholar 

  177. White PJ, George TS, Gregory PJ, Bengough AG, Hallett PD, McKenzie BM (2013) Matching roots to their environment. Ann Bot 112:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. World Health Organisation WHO (2008) Persistent organic pollutants (POPs): Children’s Health and the Environment. http://www.who.int/ceh/capacity/POPs.pdf. Accessed 04 Nov 2016

  179. World Health Organisation (WHO) (2010) Persistent organic pollutants: impact on child health. ISBN: 978 92 4 150110 1 2010. http://www.who.int/ceh/publications/persistent_organic_pollutant/en/index.html. Accessed 18 Nov 2016

  180. Wspalz T, Fujiyoshi Y, Engel A (2009) The AQP structure and functional implications. In: Beitz E (ed) Aquaporins. Springer, Berlin/Heidelberg, pp 31–56

    Chapter  Google Scholar 

  181. Yakata K, Tani K, Fujiyoshi Y (2011) Water permeability and characterization of aquaporin-11. J Struct Biol 174:315–320

    Article  CAS  PubMed  Google Scholar 

  182. Ye Q, Muhr J, Steudle E (2005) A cohesion/tension model for the gating of aquaporins allows estimation of water channel pore volumes in Chara. Plant Cell Environ 28:525–535

    Article  CAS  Google Scholar 

  183. Young OR (2016) The Paris agreement: destined to succeed or doomed to fail? Pol Gov 4:124–132

    Google Scholar 

  184. Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    Article  CAS  PubMed  Google Scholar 

  185. Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang YH, Khan IA, Trethowan RM (2013) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS ONE 8:e56312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhang H, Liu W, He X, Wang Y, Zhang Q (2015) Uptake of perfluoroalkyl acids in the leaves of coniferous and deciduous broad-leaved trees. Environ Toxicol Chem 34:1499–1504

    Article  PubMed  CAS  Google Scholar 

  187. Zhang J, Li D, Zou D, Luo F, Wang X, Zheng Y, Li X (2013) A cotton gene encoding a plasma membrane aquaporin is involved in seedling development and in response to drought stress. Acta Biochim Biophys Sin 45:104–114

    Article  CAS  PubMed  Google Scholar 

  188. Zhang K, Wei YL, Zeng EY (2013) A review of environmental and human exposure to persistent organic pollutants in the Pearl River Delta, South China. Sci Total Environ 463:1093–1110

    Article  PubMed  CAS  Google Scholar 

  189. Zhang Q, Zhao M, Qian H, Lu T, Zhang Q, Liu W (2012) Enantioselective damage of diclofop acid mediated by oxidative stress and acetyl-CoA carboxylase in nontarget plant Arabidopsis thaliana. Environ Sci Technol 46:8405–8412

    Article  CAS  PubMed  Google Scholar 

  190. Zhao CX, Shao HB, Chu LY (2008) Aquaporin structure–function relationships: water flow through plant living cells. Colloid Surf B 62:163–172

    Article  CAS  Google Scholar 

  191. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153:1871–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhao M (2013) CO2 and ion transport via plant aquaporins. Dissertation, The University of Adelaide

  193. Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding assistance from the National Research Foundation (NRF) of South Africa. TEM is funded by the South African Medical Research Council (SAMRC) through funds from the National Treasury under its Economic Competitiveness and Support Package (MRC-RFA-UFSP-01-2013/VMH Study) and strategic funds from the SAMRC received from the South African National Department of Health. All opinions, findings and conclusions or recommendations expressed in this material are that of the author(s), and the MRC does not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Baptist Nzukizi Mudumbi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Endorsed by Seteno Karabo Obed Ntwampe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudumbi, J.B.N., Ntwampe, S.K.O., Mekuto, L. et al. Are Aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and Perfluoroalkyl Substances (PFASs) into Plants?. Springer Science Reviews 5, 31–48 (2017). https://doi.org/10.1007/s40362-017-0045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40362-017-0045-6

Keywords

Navigation