Skip to main content
Log in

Prognostic significance of [18F]FDG PET metabolic parameters in osteosarcoma and Ewing’s sarcoma: a systematic review and network meta-analysis

  • Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Background

Osteosarcomas (OSTs) and Ewing’s sarcomas (EWSs) present significant challenges in pediatric and adolescent oncology due to their diverse pathological features and clinical behaviors. The advent of [18F]fluoro-2-deoxy-2-d-glucose positron emission tomography ([18F]FDG PET) has introduced new potential prognostic parameters, such as the SUVmax, MTV, and TLG, but their predictive value in patients with OST and EWS remains debatable.

Methods

This systematic review and network meta-analysis were conducted in accordance with PRISMA-NMA guidelines. A comprehensive literature search covered studies from the last 15 years on [18F]FDG PET metabolic parameters in patients with OST and EWS. The prognostic value of [18F]FDG PET parameters, including pre- and posttreatment standardized uptake values (SUV1, SUV2 and the SUV2/SUV1 ratio), metabolic tumor volume (MTV1, MTV2) and total lesion glycolysis (TLG1, TLG2), on event-free survival and overall survival in patients with OST and EWS was examined. The data analysis involved traditional and network meta-analyses (NMA), including subgroup analyses and meta-regression.

Results

Our analysis included 20 studies with 858 patients. We found significant associations between higher SUV1, SUV2, MTV1 and TLG1 and survival outcomes. The NMA revealed the superior predictive strength of SUV2, MTV, and TLG over SUV1. Subgroup analysis highlighted the variable prognostic value of these parameters, particularly between pediatric and adult patients.

Conclusion

Our study suggested that [18F]FDG PET parameters, particularly SUV2, MTV1, and TLG1, have significant prognostic value in patients with OST and EWS. Further research involving larger cohorts and standardized methodologies is essential to confirm and build upon these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article.

Abbreviations

[18F]FDG:

[18F]fluoro‑2‑deoxy‑2‑d‑glucose

OST:

Osteosarcoma

CI:

Confidence interval

EFS:

Event-free survival

EWS:

Ewing’s sarcoma

FDA:

Food and Drug Administration

HR:

Hazard ratio

INPLASY:

International Platform of Registered Systematic Review and Meta-analysis Protocols

MTV:

metabolic tumor volume

NAC:

Neoadjuvant Chemotherapy

NMA:

Network meta-analysis

OS:

overall survival

PET:

Positron emission tomography

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PRISMA-NMA:

PRISMA extension statement for reporting systematic reviews incorporating network meta-analyses of health care interventions

REML:

restricted maximum likelihood

ROC:

Receiver operating characteristic

STS:

Soft-tissue sarcoma

SUV:

standardized uptake value

SUVmax:

Maximum standardized uptake value

TLG:

Total lesion glycolysis

References

  1. Zöllner SK, Amatruda JF, Bauer S et al (2021) Ewing sarcoma—diagnosis, treatment, clinical challenges and future perspectives. J Clin Med 10:1685. https://doi.org/10.3390/jcm10081685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Strauss SJ, Frezza AM, Abecassis N et al (2021) Bone sarcomas: ESMO–EURACAN–GENTURIS–ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up ☆. Ann Oncol 32:1520–1536. https://doi.org/10.1016/j.annonc.2021.08.1995

    Article  CAS  PubMed  Google Scholar 

  3. Jagodzińska-Mucha P, Raciborska A, Koseła-Paterczyk H et al (2021) Age as a prognostic factor in patients with ewing sarcoma—the Polish sarcoma group experience. J Clin Med 10:3627. https://doi.org/10.3390/jcm10163627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee JA, Lim J, Jin HY et al (2021) Osteosarcoma in adolescents and young adults. Cells 10:2684. https://doi.org/10.3390/cells10102684

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fayzullina D, Tsibulnikov S, Stempen M et al (2022) Novel targeted therapeutic strategies for Ewing Sarcoma. Cancers (Basel) 14:1988. https://doi.org/10.3390/cancers14081988

    Article  CAS  PubMed  Google Scholar 

  6. Xiao X, Wang W, Zhang H et al (2015) Individualized chemotherapy for osteosarcoma and identification of gene mutations in osteosarcoma. Tumor Biol 36:2427–2435. https://doi.org/10.1007/s13277-014-2853-5

    Article  CAS  Google Scholar 

  7. Huang C, Yu QP, Ding Z et al (2023) The clinical characteristics, novel predictive tool, and risk classification system for primary ewing sarcoma patients that underwent chemotherapy: a large population-based retrospective cohort study. Cancer Med 12:6244–6259. https://doi.org/10.1002/cam4.5379

    Article  CAS  PubMed  Google Scholar 

  8. Shi J, Yang J, Ma X et al (2020) Risk factors for metastasis and poor prognosis of ewing sarcoma: a population based study. J Orthop Surg Res 15:1–14. https://doi.org/10.1186/s13018-020-01607-8

    Article  Google Scholar 

  9. Zhou H, Yang S, Xie T et al (2022) Risk factors, prognostic factors, and Nomograms for Bone Metastasis in patients with newly diagnosed Clear Cell Renal Cell Carcinoma: a large Population-based study. Front Surg 9:672024. https://doi.org/10.3389/fsurg.2022.877653

    Article  Google Scholar 

  10. Xin S, Wei G (2020) Prognostic factors in osteosarcoma: a study level meta-analysis and systematic review of current practice. J Bone Oncol 21:100281. https://doi.org/10.1016/j.jbo.2020.100281

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bosma SE, Ayu O, Fiocco M et al (2018) Prognostic factors for survival in ewing sarcoma: a systematic review. Surg Oncol 27:603–610. https://doi.org/10.1016/j.suronc.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  12. Uslu L, Donig J, Link M et al (2015) Value of18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286. https://doi.org/10.2967/jnumed.114.146290

    Article  CAS  PubMed  Google Scholar 

  13. Kubo T, Furuta T, Johan MP et al (2016) Prognostic significance of 18F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer 58:104–111. https://doi.org/10.1016/j.ejca.2016.02.007

    Article  PubMed  Google Scholar 

  14. Li YJ, Dai YL, Cheng YS et al (2016) Positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: a meta-analysis. Eur J Surg Oncol 42:1103–1114. https://doi.org/10.1016/j.ejso.2016.04.056

    Article  PubMed  Google Scholar 

  15. Byun BH, Kong CB, Park J et al (2013) Initial metabolic tumor volume measured by 18F-FDG PET/CT can predict the outcome of osteosarcoma of the extremities. J Nucl Med 54:1725–1732. https://doi.org/10.2967/jnumed.112.117697

    Article  CAS  PubMed  Google Scholar 

  16. Costelloe CM, Macapinlac HA, Madewell JE et al (2009) 18F-FDG PET/CT as an indicator of progression-free and overall survival in osterosarcoma. J Nucl Med 50:340–347. https://doi.org/10.2967/jnumed.108.058461

    Article  PubMed  Google Scholar 

  17. Hwang JP, Lim I, Kong CB et al (2016) Prognostic value of SUVmax measured by pretreatment fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in patients with Ewing sarcoma. PLoS ONE 11. https://doi.org/10.1371/journal.pone.0153281

  18. Im HJ, Zhang Y, Wu H et al (2018) Prognostic value of metabolic and volumetric parameters of FDG PET in pediatric osteosarcoma: a hypothesisgenerating study. Radiology 287:303–312. https://doi.org/10.1148/radiol.2017162758

    Article  PubMed  Google Scholar 

  19. Jamet B, Carlier T, Campion L et al (2017) Initial FDG-PET/CT predicts survival in adults ewing sarcoma family of tumors. Oncotarget 8:77050–77060. https://doi.org/10.18632/oncotarget.20335

    Article  PubMed  PubMed Central  Google Scholar 

  20. Albano D, Dondi F, Schumacher RF et al (2020) Clinical and prognostic role of 18F-FDG PET/CT in Pediatric Ewing Sarcoma. J Pediatr Hematol Oncol 42:E79–86. https://doi.org/10.1097/MPH.0000000000001518

    Article  CAS  PubMed  Google Scholar 

  21. Hack RI, Becker AS, Bode-Lesniewska B et al (2021) When suv matters: Fdg pet/ct at baseline correlates with survival in soft tissue and ewing sarcoma. Life 11. https://doi.org/10.3390/life11090869

  22. Polverari G, Ceci F, Passera R et al (2020) [18F]FDG PET/CT for evaluating early response to neoadjuvant chemotherapy in pediatric patients with sarcoma: a prospective single-center trial. EJNMMI Res 10. https://doi.org/10.1186/s13550-020-00715-0

  23. Hutton B, Salanti G, Caldwell DM et al (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784. https://doi.org/10.7326/M14-2385

    Article  PubMed  Google Scholar 

  24. Higgins JPT, Thomas J, Chandler J et al Cochrane handbook for systematic reviews of interventions. Cochrane Handb Syst Rev Interv. 2019:1–694. https://doi.org/10.1002/9781119536604

  25. Literature Map Software for Lit Reviews (2023) & Research| Litmaps n.d. https://www.litmaps.com/ (accessed 24 November 2023)

  26. Tierney JF, Stewart LA, Ghersi D et al (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16. https://doi.org/10.1186/1745-6215-8-16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Harbord RM, Higgins JPT (2008) Meta-regression in Stata. Stata J 8:493–519. https://doi.org/10.1177/1536867x0800800403

    Article  Google Scholar 

  28. Nikolakopoulou A, Higgins JPT, Papakonstantinou T et al (2020) Cinema: an approach for assessing confidence in the results of a network meta-analysis. PLoS Med 17:e1003082. https://doi.org/10.1371/JOURNAL.PMED.1003082

    Article  PubMed  PubMed Central  Google Scholar 

  29. Papakonstantinou T, Nikolakopoulou A, Higgins JPT et al (2020) CINeMA: Software for semiautomated assessment of the confidence in the results of network meta-analysis. Campbell Syst Rev 16:e1080. https://doi.org/10.1002/cl2.1080

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chiocchia V, Nikolakopoulou A, Higgins JPT et al (2021) ROB-MEN: a tool to assess risk of bias due to missing evidence in network meta-analysis. BMC Med 19:304. https://doi.org/10.1186/s12916-021-02166-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. CLARITY-group Tool to Assess Risk of Bias in Case Control Studies Hamilton, Ontario: McMaster University n.d. https://www.evidencepartners.com/wp-content/uploads/2021/03/Tool-to-Assess-Risk-of-Bias-in-Case-Control-Studies-DistillerSR.pdf (accessed 14 July 2023)

  32. McGuinness LA, Higgins JPT (2021) Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12:55–61. https://doi.org/10.1002/jrsm.1411

    Article  PubMed  Google Scholar 

  33. Egger M, Smith GD, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  Google Scholar 

  34. Foroutan F, Guyatt G, Zuk V et al (2020) GRADE guidelines 28: use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. J Clin Epidemiol 121:62–70. https://doi.org/10.1016/j.jclinepi.2019.12.023

    Article  PubMed  Google Scholar 

  35. FDA. Pediatric Medical Devices| FDA (2019) https://www.fda.gov/medical-devices/products-and-medical-procedures/pediatric-medical-devices (accessed 14 July 2023).

  36. Sato J, Yanagawa T, Dobashi Y et al (2008) Prognostic significance of 18F-FDG uptake in primary osteosarcoma after but not before chemotherapy: a possible association with autocrine motility factor/phosphoglucose isomerase expression. Clin Exp Metastasis 25:427–435. https://doi.org/10.1007/s10585-008-9147-5

    Article  PubMed  Google Scholar 

  37. Salem U, Amini B, Chuang HH et al (2017) 18 F-FDG PET/CT as an indicator of survival in ewing sarcoma of bone. J Cancer 8:2892–2898. https://doi.org/10.7150/jca.20077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Raciborska A, Bilska K, Drabko K et al (2016) Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma. Clin Transl Oncol 18:189–195. https://doi.org/10.1007/s12094-015-1351-6

    Article  CAS  PubMed  Google Scholar 

  39. Palmerini E, Colangeli M, Nanni C et al (2017) The role of FDG PET/CT in patients treated with neoadjuvant chemotherapy for localized bone sarcomas. Eur J Nucl Med Mol Imaging 44:215–223. https://doi.org/10.1007/s00259-016-3509-z

    Article  CAS  PubMed  Google Scholar 

  40. Lee I, Byun BH, Lim I et al (2020) Early response monitoring of neoadjuvant chemotherapy using [18F]FDG PET can predict the clinical outcome of extremity osteosarcoma. EJNMMI Res 10:1–9. https://doi.org/10.1186/s13550-019-0588-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Joo HO, Luber BS, Leal JP et al (2016) Response to early treatment evaluated with 18F-FDG PET and PERCIST 1.0 predicts survival in patients with ewing sarcoma family of tumors treated with a monoclonal antibody to the insulinlike growth factor 1 receptor. J Nucl Med 57:735–740. https://doi.org/10.2967/jnumed.115.162412

    Article  CAS  Google Scholar 

  42. Hawkins DS, Conrad EU, Butrynski JE et al (2009) [F-18]-fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 115:3519–3525. https://doi.org/10.1002/cncr.24421

    Article  PubMed  Google Scholar 

  43. Annovazzi A, Ferraresi V, Anelli V et al (2021) [18F]FDG PET/CT quantitative parameters for the prediction of histological response to induction chemotherapy and clinical outcome in patients with localised bone and soft-tissue Ewing sarcoma. Eur Radiol 31:7012–7021. https://doi.org/10.1007/s00330-021-07841-w

    Article  CAS  PubMed  Google Scholar 

  44. Andersen KF, Fuglo HM, Rasmussen SH et al (2015) Volume-based F-18 FDG PET/CT imaging markers provide supplemental prognostic information to histologic grading in patients with high-grade bone or soft tissue sarcoma. Med (United States) 94. https://doi.org/10.1097/MD.0000000000002319

  45. Andersen KF, Fuglo HM, Rasmussen SH et al (2015) Semi-quantitative calculations of primary tumor metabolic activity using F-18 FDG PET/CT as a predictor of survival in 92 patients with high-grade bone or soft tissue sarcoma. Med (United States) 94. https://doi.org/10.1097/MD.0000000000001142

  46. Vadi SK, Mittal BR, Gorla AKR et al (2018) 18F-FDG PET/CT in diagnostic and prognostic evaluation of patients with suspected recurrence of Chondrosarcoma. Clin Nucl Med 43:87–93. https://doi.org/10.1097/RLU.0000000000001947

    Article  PubMed  Google Scholar 

  47. Song H, Jiao Y, Wei W et al (2019) Can pretreatment 18F-FDG PET tumor texture features predict the outcomes of osteosarcoma treated by neoadjuvant chemotherapy? Eur Radiol 29:3945–3954. https://doi.org/10.1007/s00330-019-06074-2

    Article  PubMed  Google Scholar 

  48. Vesselle H, Turcotte E, Wiens L et al (2004) Relationship between non-small cell lung cancer fluorodeoxyglucose uptake at positron emission tomography and surgical stage with relevance to patient prognosis. Clin Cancer Res 10:4709–4716. https://doi.org/10.1158/1078-0432.CCR-03-0773

    Article  CAS  PubMed  Google Scholar 

  49. Oprea-Lager DE, Kramer G, Van De Ven PM et al (2016) Repeatability of quantitative 18F-Fluoromethylcholine PET/CT studies in prostate cancer. J Nucl Med 57:721–727. https://doi.org/10.2967/jnumed.115.167692

    Article  CAS  PubMed  Google Scholar 

  50. Rijo-Cedeño J, Mucientes J, Álvarez O et al (2020) Metabolic tumor volume and total lesion glycolysis as prognostic factors in head and neck cancer: systematic review and meta-analysis. Head Neck 42:3744–3754. https://doi.org/10.1002/hed.26461

    Article  PubMed  Google Scholar 

  51. Wen W, Piao Y, Xu D et al (2021) Prognostic value of MTV and TLG of 18F-FDG PET in patients with Stage I and II Non-small-cell Lung Cancer: a Meta-analysis. Contrast Media Mol Imaging 2021. https://doi.org/10.1155/2021/7528971

  52. Pak K, Cheon GJ, Nam HY et al (2014) Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med 55:884–890. https://doi.org/10.2967/jnumed.113.133801

    Article  CAS  PubMed  Google Scholar 

  53. Pan M, Merchant M (2018) Risk factors including age, stage and anatomic location that Impact the outcomes of patients with synovial sarcoma. Med Sci 6. https://doi.org/10.3390/MEDSCI6010021

  54. Janeway KA, Barkauskas DA, Krailo MD et al (2012) Outcome for adolescent and young adult patients with osteosarcoma: a report from the Children’s Oncology Group. Cancer 118:4597–4605. https://doi.org/10.1002/CNCR.27414

    Article  PubMed  Google Scholar 

  55. Cotterill SJ, Ahrens S, Paulussen M et al (2000) Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18:3108–3114. https://doi.org/10.1200/JCO.2000.18.17.3108

    Article  CAS  PubMed  Google Scholar 

  56. Oh C, Bishop MW, Cho SY et al (2023) 18F-FDG PET/CT in the management of Osteosarcoma. J Nucl Med 64:842–851. https://doi.org/10.2967/JNUMED.123.265592

    Article  CAS  PubMed  Google Scholar 

  57. Lyra V, Chatziioannou S, Kallergi M (2022) Clinical perspectives for 18F-FDG PET imaging in Pediatric Oncology: Μetabolic tumor volume and Radiomics. Metabolites 12:12. https://doi.org/10.3390/METABO12030217

    Article  Google Scholar 

  58. Jeong SY, Kim W, Byun BH et al (2019) Prediction of Chemotherapy Response of Osteosarcoma Using Baseline 18F-FDG Textural Features Machine Learning Approaches with PCA. Contrast Media Mol Imaging.;2019. https://doi.org/10.1155/2019/3515080

  59. Kim J, Jeong SY, Kim BC et al (2021) Prediction of neoadjuvant chemotherapy response in osteosarcoma using convolutional neural network of tumor center18 F-FDG PET images. Diagnostics 11. https://doi.org/10.3390/diagnostics11111976

Download references

Acknowledgements

None.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

M.Y., Y.L. and E.R. collected the data. M.Y., L.B., and Y.L. contributed data and analysis tools. M.Y. performed the analysis. M.Y., L.B., and Y.L. assessed the risk of bias and certainty of evidence rating. M.Y., E.R., E.K., A.K., and Y.L. wrote the paper. E.K., A.K., and Y.L. revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Mikhail Ya. Yadgarov.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadgarov, M.Y., Berikashvili, L.B., Rakova, E.S. et al. Prognostic significance of [18F]FDG PET metabolic parameters in osteosarcoma and Ewing’s sarcoma: a systematic review and network meta-analysis. Clin Transl Imaging (2024). https://doi.org/10.1007/s40336-024-00645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40336-024-00645-0

Keywords

Navigation