Skip to main content

Advertisement

Log in

Prognostic significance of [18F]FDG PET metabolic parameters in adults and children with soft-tissue sarcoma: a meta-analysis

  • Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Background

Soft-tissue sarcomas (STS) represent a diverse group of rare malignancies, underscoring the need for precise risk stratification. [18F]fluoro‑2‑deoxy‑2‑d‑glucose positron emission tomography ([18F]FDG PET) imaging parameters have been proposed as potential prognostic indicators in several cancer types, yet their significance in STS remains under investigation. This study aimed to synthesize the available evidence and assess the prognostic value of these parameters.

Methods

A systematic review and meta-analysis was conducted, employing a comprehensive literature search across multiple databases. The prognostic value of [18F]FDG PET parameters, including pre- and post- treatment standardized uptake values (SUV1, SUV2), pretreatment metabolic tumor volume (MTV1) and total lesion glycolysis (TLG1) on event-free survival (EFS) and overall survival (OS) in patients with STS was examined.

Results

Thirty-one studies with 1,932 patients were identified. The analyses demonstrated significant relationships between higher SUV1 (hazard ratio, HR 1.68 for EFS and 3.07 for OS, p < 0.001), SUV2 (HR 3.13 for EFS and 2.09 for OS, p < 0.001 and p = 0.001 respectively), MTV1 (HR 2.29 for EFS and 3.05 for OS, p = 0.011 and p < 0.001 respectively), TLG1 (HR 2.85 for EFS and 3.23 for OS, p = 0.032 and p = 0.002 respectively) and poorer survival outcomes. However, the association of these parameters with survival outcomes was non-significant in pediatric patients.

Conclusion

This study suggests that [18F]FDG PET parameters could serve as important prognostic markers in adults with STS, but not in pediatric patients. Future studies with larger cohorts and uniform methodologies are critical to confirm and build upon these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The authors declare that all data supporting the findings of this study are available within the article.

Abbreviations

[18F]FDG:

[18F]fluoro‑2‑deoxy‑2‑d‑glucose

CI:

Confidence interval

EFS:

Event-free survival

FNCLCC:

Fédération Nationale des Centres de Lutte Contre Le Cancer Sarcoma Group

HR:

Hazard ratio

IQR:

Interquartile range

M:

Multicenter

Me:

Median

MTV:

Metabolic tumor volume

NA:

Not applicable

NAC:

Neoadjuvant chemotherapy

NR:

Not reported

OS:

Overall survival

PET:

Positron emission tomography

Pro:

Prospective

Prov:

Provided

REML:

REstricted Maximum–Likelihood

Retro:

Retrospective

RMS:

Rhabdomyosarcoma

ROC:

Receiver operating characteristic curve

S:

Single center

SD:

Standard deviation

STS:

Soft-tissue sarcoma

SUV:

Standardized uptake value

TLG:

Total lesion glycolysis

TSA:

Trial sequential analysis

References

  1. Seldon C, Shrivastava G, Al-Awady A et al (2021) Variation in management of extremity soft-tissue sarcoma in younger vs older adults. JAMA Netw Open. https://doi.org/10.1001/jamanetworkopen.2021.20951

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferrari A, Brennan B, Casanova M et al (2022) Pediatric non-rhabdomyosarcoma soft tissue sarcomas: standard of care and treatment recommendations from the European Paediatric Soft Tissue Sarcoma Study Group (EpSSG). Cancer Manag Res 14:2885–2902. https://doi.org/10.2147/CMAR.S368381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kunisada T, Nakata E, Fujiwara T et al (2023) Soft-tissue sarcoma in adolescents and young adults. Int J Clin Oncol 28:1–11. https://doi.org/10.1007/s10147-022-02119-7

    Article  PubMed  Google Scholar 

  4. Burningham Z, Hashibe M, Spector L, Schiffman JD (2012) The epidemiology of sarcoma. Clin Sarcoma Res 2:1–16. https://doi.org/10.1186/2045-3329-2-14

    Article  Google Scholar 

  5. Ray-Coquard I, Serre D, Reichardt P et al (2018) Options for treating different soft tissue sarcoma subtypes. Futur Oncol 14:25–49. https://doi.org/10.2217/fon-2018-0076

    Article  CAS  Google Scholar 

  6. Grünewald TG, Alonso M, Avnet S et al (2020) Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. https://doi.org/10.15252/emmm.201911131

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ducimetière F, Lurkin A, Ranchère-Vince D et al (2011) Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS ONE. https://doi.org/10.1371/journal.pone.0020294

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jacobs AJ, Michels R, Stein J, Levin AS (2015) Improvement in overall survival from extremity soft tissue sarcoma over twenty years. Sarcoma. https://doi.org/10.1155/2015/279601

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zagars GK, Ballo MT, Pisters PWT et al (2003) Prognostic factors for patients with localized soft-tissue sarcoma treated with conservation surgery and radiation therapy: an analysis of 1225 patients. Cancer 97:2530–2543. https://doi.org/10.1002/cncr.11365

    Article  PubMed  Google Scholar 

  10. Toulmonde M, Bonvalot S, Méeus P et al (2014) Retroperitoneal sarcomas: Patterns of care at diagnosis, prognostic factors and focus on main histological subtypes: a multicenter analysis of the French Sarcoma Group. Ann Oncol 25:735–742. https://doi.org/10.1093/annonc/mdt577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Uslu L, Donig J, Link M et al (2015) Value of18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 56:274–286. https://doi.org/10.2967/jnumed.114.146290

    Article  PubMed  CAS  Google Scholar 

  12. El-Kholy E, El Nadi E, Hafez H et al (2019) Added predictive value of 18F-FDG PET/CT for pediatric rhabdomyosarcoma. Nucl Med Commun 40:898–904. https://doi.org/10.1097/MNM.0000000000001040

    Article  PubMed  CAS  Google Scholar 

  13. Casey DL, Wexler LH, Fox JJ et al (2014) Predicting outcome in patients with rhabdomyosarcoma: role of [18F]fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys 90:1136–1142. https://doi.org/10.1016/j.ijrobp.2014.08.005

    Article  PubMed  Google Scholar 

  14. Park JY, Lee JW, Lee HJ et al (2017) Prognostic significance of preoperative 18F-FDG PET/CT in uterine leiomyosarcoma. J Gynecol Oncol 28:28. https://doi.org/10.3802/jgo.2017.28.e28

    Article  Google Scholar 

  15. Hack RI, Becker AS, Bode-Lesniewska B et al (2021) When suv matters: Fdg pet/ct at baseline correlates with survival in soft tissue and ewing sarcoma. Life. https://doi.org/10.3390/life11090869

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lim HJ, Johnny Ong CA, Tan JWS, Ching Teo MC (2019) Utility of positron emission tomography/computed tomography (PET/CT) imaging in the evaluation of sarcomas: a systematic review. Crit Rev Oncol Hematol 143:1–13. https://doi.org/10.1016/j.critrevonc.2019.07.002

    Article  PubMed  Google Scholar 

  17. Li YJ, Dai YL, Cheng YS et al (2016) Positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: a meta-analysis. Eur J Surg Oncol 42:1103–1114. https://doi.org/10.1016/j.ejso.2016.04.056

    Article  PubMed  Google Scholar 

  18. Kubo T, Furuta T, Johan MP, Ochi M (2016) Prognostic significance of 18F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer 58:104–111. https://doi.org/10.1016/j.ejca.2016.02.007

    Article  PubMed  Google Scholar 

  19. Chen L, Wu X, Ma X et al (2017) Prognostic value of 18F-FDG PET-CT-based functional parameters in patients with soft tissue sarcoma a meta-analysis. Med (United States). https://doi.org/10.1097/MD.0000000000005913

    Article  PubMed Central  Google Scholar 

  20. Okazumi S, Dimitrakopoulou-Strauss A, Schwarzbach MHM, Strauss LG (2009) Quantitative, dynamic 18F-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hell J Nucl Med 12:223–228

    PubMed  Google Scholar 

  21. Lyra V, Chatziioannou S, Kallergi M (2022) Clinical perspectives for18 F-FDG PET imaging in pediatric oncology: μetabolic tumor volume and radiomics. Metabolites. https://doi.org/10.3390/metabo12030217

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. https://doi.org/10.1371/journal.pmed.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  23. Khoury JD, Coffin CM, Spunt SL et al (2010) Grading of nonrhabdomyosarcoma soft tissue sarcoma in children and adolescents: a comparison of parameters used for the Fédération Nationale des Centers de Lutte Contre le Cancer and Pediatric Oncology Group systems. Cancer 116:2266–2274. https://doi.org/10.1002/cncr.24929

    Article  PubMed  Google Scholar 

  24. Tierney JF, Stewart LA, Ghersi D et al (2007) Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 8:16. https://doi.org/10.1186/1745-6215-8-16

    Article  PubMed  PubMed Central  Google Scholar 

  25. Higgins JPT, Thomas J, Chandler J et al (2019) Cochrane handbook for systematic reviews of interventions. Cochrane Handb Syst Rev Interv. https://doi.org/10.1002/9781119536604

    Article  Google Scholar 

  26. Harbord RM, Higgins JPT (2008) Meta-regression in Stata. Stata J 8:493–519. https://doi.org/10.1177/1536867x0800800403

    Article  Google Scholar 

  27. De Cassai A, Tassone M, Geraldini F et al (2021) Explanation of trial sequential analysis: using a post-hoc analysis of meta-analyses published in Korean Journal of Anesthesiology. Korean J Anesthesiol 74:383–393. https://doi.org/10.4097/KJA.21218

    Article  PubMed  PubMed Central  Google Scholar 

  28. CLARITY-group. Tool to Assess Risk of Bias in Case Control Studies Hamilton, Ontario: McMaster University. https://www.evidencepartners.com/wp-content/uploads/2021/03/Tool-to-Assess-Risk-of-Bias-in-Case-Control-Studies-DistillerSR.pdf. Accessed 14 Jul 2023

  29. McGuinness LA, Higgins JPT (2021) Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. Res Synth Methods 12:55–61. https://doi.org/10.1002/jrsm.1411

    Article  PubMed  Google Scholar 

  30. Egger M, Smith GD, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  Google Scholar 

  31. Foroutan F, Guyatt G, Zuk V et al (2020) GRADE Guidelines 28: use of GRADE for the assessment of evidence about prognostic factors: rating certainty in identification of groups of patients with different absolute risks. J Clin Epidemiol 121:62–70. https://doi.org/10.1016/j.jclinepi.2019.12.023

    Article  PubMed  Google Scholar 

  32. FDA (2019) Pediatric Medical Devices | FDA. https://www.fda.gov/medical-devices/products-and-medical-procedures/pediatric-medical-devices. Accessed 14 Jul 2023

  33. Andersen KF, Fuglo HM, Rasmussen SH et al (2015) Semi-quantitative calculations of primary tumor metabolic activity using F-18 FDG PET/CT as a predictor of survival in 92 patients with high-grade bone or soft tissue sarcoma. Med (United States). https://doi.org/10.1097/MD.0000000000001142

    Article  PubMed Central  Google Scholar 

  34. Andersen KF, Fuglo HM, Rasmussen SH et al (2015) Volume-Based F-18 FDG PET/CT imaging markers provide supplemental prognostic information to histologic grading in patients with high-grade bone or soft tissue sarcoma. Med (United States). https://doi.org/10.1097/MD.0000000000002319

    Article  PubMed Central  Google Scholar 

  35. Andreou D, Boldt H, Pink D et al (2014) Prognostic relevance of 18F-FDG PET uptake in patients with locally advanced, extremity soft tissue sarcomas undergoing neoadjuvant isolated limb perfusion with TNF-α and melphalan. Eur J Nucl Med Mol Imaging 41:1076–1083. https://doi.org/10.1007/s00259-013-2680-8

    Article  PubMed  CAS  Google Scholar 

  36. Annovazzi A, Ferraresi V, Covello R et al (2023) Prognostic value of pre-treatment [18F]FDG PET/CT texture analysis in undifferentiated soft-tissue sarcoma. J Clin Med. https://doi.org/10.3390/jcm12010279

    Article  Google Scholar 

  37. Chang KJ, Lim I, Park JY et al (2010) The role of 18F-FDG PET/CT as a prognostic factor in patients with synovial sarcoma. Nucl Med Mol Imaging 49:33–41. https://doi.org/10.1007/s13139-014-0301-5

    Article  CAS  Google Scholar 

  38. Chen D, Tang M, Lv S et al (2022) Prognostic usefulness of clinical features and pretreatment 18F-FDG PET/CT metabolic parameters in patients with angiosarcoma. Quant Imaging Med Surg 12:2792–2804. https://doi.org/10.21037/qims-21-563

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cheriyalinkal Parambil B, Shah S, Prasad M et al (2023) Can 18F-FDG-positron emission tomography be a prognostic tool in children with rhabdomyosarcoma treated with definitive radiotherapy? J Pediatr Hematol Oncol 45:E363–E369. https://doi.org/10.1097/MPH.0000000000002565

    Article  PubMed  CAS  Google Scholar 

  40. Choi ES, Ha SG, Kim HS et al (2013) Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging 40:1836–1842. https://doi.org/10.1007/s00259-013-2511-y

    Article  PubMed  CAS  Google Scholar 

  41. Dharmarajan KV, Wexler LH, Gavane S et al (2012) Positron emission tomography (PET) evaluation after initial chemotherapy and radiation therapy predicts local control in rhabdomyosarcoma. Int J Radiat Oncol Biol Phys 84:996–1002. https://doi.org/10.1016/j.ijrobp.2012.01.077

    Article  PubMed  Google Scholar 

  42. Fayolle H, Jehanno N, Lauwers-Cances V et al (2022) PET metabolic tumor volume as a new prognostic factor in childhood rhabdomyosarcoma. PLoS ONE. https://doi.org/10.1371/journal.pone.0261565

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fendler WP, Lehmann M, Todica A et al (2015) PET response criteria in solid tumors predicts progression-free survival and time to local or distant progression after chemotherapy with regional hyperthermia for soft-tissue sarcoma. J Nucl Med 56:530–537. https://doi.org/10.2967/jnumed.114.152462

    Article  PubMed  CAS  Google Scholar 

  44. Ha SC, Oh JS, Roh JL et al (2017) Pretreatment tumor SUVmax predicts disease-specific and overall survival in patients with head and neck soft tissue sarcoma. Eur J Nucl Med Mol Imaging 44:33–40. https://doi.org/10.1007/s00259-016-3456-8

    Article  PubMed  CAS  Google Scholar 

  45. Harrison DJ, Chi YY, Tian J et al (2021) Metabolic response as assessed by 18F-fluorodeoxyglucose positron emission tomography-computed tomography does not predict outcome in patients with intermediate- or high-risk rhabdomyosarcoma: a report from the Children’s Oncology Group Soft Tissue Sarcom. Cancer Med 10:857–866. https://doi.org/10.1002/cam4.3667

    Article  PubMed  Google Scholar 

  46. Herrmann K, Benz MR, Czernin J et al (2012) 18F-FDG-PET/CT imaging as an early survival predictor in patients with primary high-grade soft tissue sarcomas undergoing neoadjuvant therapy. Clin Cancer Res 18:2024–2031. https://doi.org/10.1158/1078-0432.CCR-11-2139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hong SP, Lee SE, La CY et al (2014) Prognostic value of 18F-FDG PET/CT in patients with soft tissue sarcoma: comparisons between metabolic parameters. Skeletal Radiol 43:641–648. https://doi.org/10.1007/s00256-014-1832-7

    Article  PubMed  Google Scholar 

  48. Jo SJ, Kim KD, Lim SH et al (2022) The role of preoperative 18F-fluorodeoxyglucose positron emission tomography/computed tomography in retroperitoneal sarcoma. Front Oncol. https://doi.org/10.3389/fonc.2022.868823

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kalisvaart GM, Grootjans W, Bovée JVMG et al (2021) Prognostic value of quantitative [18 f]fdg-pet features in patients with metastases from soft tissue sarcoma. Diagnostics. https://doi.org/10.3390/diagnostics11122271

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kato A, Nakamoto Y, Ishimori T et al (2020) Prognostic value of quantitative parameters of 18F-FDG PET/CT for patients with angiosarcoma. Am J Roentgenol 214:649–6549. https://doi.org/10.2214/AJR.19.21635

    Article  Google Scholar 

  51. Kitao T, Shiga T, Hirata K et al (2019) Volume-based parameters on FDG PET may predict the proliferative potential of soft-tissue sarcomas. Ann Nucl Med 33:22–31. https://doi.org/10.1007/s12149-018-1298-0

    Article  PubMed  Google Scholar 

  52. Lisle JW, Eary JF, O’Sullivan J, Conrad EU (2009) Risk assessment based on FDG-PET imaging in patients with synovial sarcoma. Clin Orthop Relat Res 467:1605–1611. https://doi.org/10.1007/s11999-008-0647-z

    Article  PubMed  Google Scholar 

  53. Rhu J, Hyun SH, Lee KH et al (2019) Maximum standardized uptake value on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography improves outcome prediction in retroperitoneal liposarcoma. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-43215-5

    Article  CAS  Google Scholar 

  54. Sambri A, Bianchi G, Longhi A et al (2019) The role of F-FDG PET/CT in soft tissue sarcoma. Nucl Med Commun 40:626–631. https://doi.org/10.1097/MNM.0000000000001002

    Article  PubMed  CAS  Google Scholar 

  55. Tateishi U, Kawai A, Chuman H et al (2011) PET/CT allows stratification of responders to neoadjuvant chemotherapy for high-grade sarcoma: a prospective study. Clin Nucl Med 36:526–532. https://doi.org/10.1097/RLU.0b013e3182175856

    Article  PubMed  Google Scholar 

  56. Umemura H, Yamasaki O, Kaji T et al (2017) Prognostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with cutaneous angiosarcoma: a retrospective study of 18 cases. J Dermatol 44:1046–1049. https://doi.org/10.1111/1346-8138.13839

    Article  PubMed  CAS  Google Scholar 

  57. Wakamatsu T, Imura Y, Tamiya H et al (2021) 18F-fluorodeoxyglucose positron emission tomography is useful in the evaluation of prognosis in retroperitoneal sarcoma. Cancers (Basel). https://doi.org/10.3390/cancers13184611

    Article  PubMed  Google Scholar 

  58. Yamamoto M, Tsujikawa T, Yamada S et al (2017) 18F-FDG/18F-FES standardized uptake value ratio determined using PET predicts prognosis in uterine sarcoma. Oncotarget 8:22581–22589. https://doi.org/10.18632/oncotarget.15127

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hayes DF, Isaacs C, Stearns V (2001) Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia 6:375–392. https://doi.org/10.1023/A:1014778713034

    Article  PubMed  CAS  Google Scholar 

  60. Vesselle H, Turcotte E, Wiens L et al (2004) Relationship between non-small cell lung cancer fluorodeoxyglucose uptake at positron emission tomography and surgical stage with relevance to patient prognosis. Clin Cancer Res 10:4709–4716. https://doi.org/10.1158/1078-0432.CCR-03-0773

    Article  PubMed  CAS  Google Scholar 

  61. Oprea-Lager DE, Kramer G, Van De Ven PM et al (2016) Repeatability of quantitative 18F-fluoromethylcholine PET/CT studies in prostate cancer. J Nucl Med 57:721–727. https://doi.org/10.2967/jnumed.115.167692

    Article  PubMed  CAS  Google Scholar 

  62. Song H, Jiao Y, Wei W et al (2019) Can pretreatment 18F-FDG PET tumor texture features predict the outcomes of osteosarcoma treated by neoadjuvant chemotherapy? Eur Radiol 29:3945–3954. https://doi.org/10.1007/s00330-019-06074-2

    Article  PubMed  Google Scholar 

  63. Rijo-Cedeño J, Mucientes J, Álvarez O et al (2020) Metabolic tumor volume and total lesion glycolysis as prognostic factors in head and neck cancer: systematic review and meta-analysis. Head Neck 42:3744–3754. https://doi.org/10.1002/hed.26461

    Article  PubMed  Google Scholar 

  64. Wen W, Piao Y, Xu D, Li X (2021) Prognostic value of MTV and TLG of 18F-FDG PET in patients with stage I and II non-small-cell lung cancer: a meta-analysis. Contrast Media Mol Imaging. https://doi.org/10.1155/2021/7528971

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pak K, Cheon GJ, Nam HY et al (2014) Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med 55:884–890. https://doi.org/10.2967/jnumed.113.133801

    Article  PubMed  CAS  Google Scholar 

  66. Bailly C, Leforestier R, Campion L et al (2017) Prognostic value of FDG-PET indices for the assessment of histological response to neoadjuvant chemotherapy and outcome in pediatric patients with Ewing sarcoma and osteosarcoma. PLoS ONE 12:e0183841. https://doi.org/10.1371/journal.pone.0183841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Pan M, Merchant M (2018) Risk factors including age, stage and anatomic location that impact the outcomes of patients with synovial sarcoma. Med Sci. https://doi.org/10.3390/MEDSCI6010021

    Article  Google Scholar 

  68. Janeway KA, Barkauskas DA, Krailo MD et al (2012) Outcome for adolescent and young adult patients with osteosarcoma: a report from the Children’s Oncology Group. Cancer 118:4597–4605. https://doi.org/10.1002/CNCR.27414

    Article  PubMed  Google Scholar 

  69. Cotterill SJ, Ahrens S, Paulussen M et al (2000) Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18:3108–3114. https://doi.org/10.1200/JCO.2000.18.17.3108

    Article  PubMed  CAS  Google Scholar 

  70. Macpherson RE, Pratap S, Tyrrell H et al (2018) Retrospective audit of 957 consecutive 18F-FDG PET–CT scans compared to CT and MRI in 493 patients with different histological subtypes of bone and soft tissue sarcoma. Clin Sarcoma Res. https://doi.org/10.1186/s13569-018-0095-9

    Article  PubMed  PubMed Central  Google Scholar 

  71. Li CP, Liu DN, Zhou NN et al (2021) Prediction of histologic subtype and FNCLCC grade by SUVmax measured on 18F-FDG PET/CT in patients with retroperitoneal liposarcoma. Contrast Media Mol Imaging. https://doi.org/10.1155/2021/7191363

    Article  PubMed  PubMed Central  Google Scholar 

  72. Im HJ, Bradshaw T, Solaiyappan M, Cho SY (2018) Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl Med Mol Imaging 52:5. https://doi.org/10.1007/S13139-017-0493-6

    Article  PubMed  Google Scholar 

  73. Reyes Marlés RH, Navarro Fernández JL, Puertas García-Sandoval JP et al (2021) Clinical value of baseline 18F-FDG PET/CT in soft tissue sarcomas. Eur J Hybrid Imaging. https://doi.org/10.1186/S41824-021-00110-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

MY, YL contributed to the design and implementation of the research. MY, LB, ER preformed the analysis of the results. MY, LB, ER, DK, YL wrote of the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to M. Ya. Yadgarov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2932 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadgarov, M.Y., Berikashvili, L.B., Rakova, E.S. et al. Prognostic significance of [18F]FDG PET metabolic parameters in adults and children with soft-tissue sarcoma: a meta-analysis. Clin Transl Imaging (2024). https://doi.org/10.1007/s40336-024-00620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40336-024-00620-9

Keywords

Navigation