Skip to main content
Log in

Equivocal bone lesions on PSMA PET/CT: systematic review and meta-analysis on their prevalence and malignancy rate

  • Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Prostate-specific membrane antigen (PSMA) PET/CT has an established reliable diagnostic performance for detecting metastases in prostate cancer. However, there are increasing instances of scans demonstrating equivocal bone lesions, with non-specific uptake and without a definite benign or malignant CT correlate. To date, the prevalence, malignancy rate, and relationship with radioligand type ([18F] PSMA-1007 vs. others ([68Ga]Ga-PSMA-11 and [18F] DCFPyL) for these equivocal lesions have not been extensively established.

Methods

A systematic review and meta-analysis was conducted on equivocal bone lesions. Pubmed and EMBASE were searched up to December 11, 2023. Quality of the studies was evaluated using QUADAS-2. The following proportions were pooled using random-effects model: (1) prevalence of equivocal bone lesions (i.e., number of patients with one or more equivocal bone lesions/number of patients with PSMA PET/CT) and (2) their malignancy rates (i.e., number of metastases/number of equivocal bone lesions). Subgroup analyses based on radioligand type, clinical setting, and definition of equivocal bone lesion were performed.

Results

Twenty-five studies (4484 patients) were included. Pooled prevalence of equivocal bone lesions was 20% (95%CI, 12–31%). [18F]PSMA-1007 was associated with a greater prevalence of equivocal lesions compared with other radioligands: 36% (95%CI 26–48%) vs. 8% (95%CI, 4–14%), respectively, p < 0.01. Pooled malignancy rate of equivocal bone lesions was 14% (95%CI, 7–25%). [18F]PSMA-1007 was associated with a lower malignancy rate compared to other radioligands: 8% (95%CI, 3–19%) vs. 29% (95%CI, 17–44%), respectively, p = 0.01. There were no signficant difference in prevalence or malignancy rate between subgroups stratified to clinical setting or definition of equivocal bone lesions (p = 0.32–0.60).

Conclusions

Equivocal bone lesions are often encountered on PSMA PET/CT but exihibit a low malignancy rate. Compared to other radioligands, [18F]PSMA-1007 requires special attention as it is associated with a higher frequency and lower rate of metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

BVC:

best value comparator

MRI:

magnetic resonance imaging

PET/CT:

positron emission tomography/computed tomography

PSA:

prostate-specific antigen

PSMA:

Prostate-specific membrane antigen

PSMA-RADS:

PSMA Reporting and Data System

QUADAS-2:

Quality Assessment of Diagnostic Accuracy Studies-2

References

  1. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82(11):2256–2261

    Article  CAS  PubMed  Google Scholar 

  2. Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395(10231):1208–1216

    Article  CAS  PubMed  Google Scholar 

  3. Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY et al (2019) Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate Cancer: a prospective single-arm clinical trial. JAMA Oncol 5(6):856–863

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hope TA, Eiber M, Armstrong WR, Juarez R, Murthy V, Lawhn-Heath C et al (2021) Diagnostic accuracy of 68Ga-PSMA-11 PET for pelvic nodal metastasis detection prior to radical prostatectomy and pelvic lymph node dissection: a multicenter prospective phase 3 imaging trial. JAMA Oncol 7(11):1635–1642

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pienta KJ, Gorin MA, Rowe SP, Carroll PR, Pouliot F, Probst S et al (2021) A phase 2/3 prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with 18F-DCFPyL in prostate Cancer patients (OSPREY). J Urol 206(1):52–61

    Article  PubMed  PubMed Central  Google Scholar 

  6. Surasi DS, Eiber M, Maurer T, Preston MA, Helfand BT, Josephson D et al (2023) Diagnostic performance and safety of Positron Emission Tomography with 18F-rhPSMA-7.3 in patients with newly diagnosed unfavourable Intermediate- to very-high-risk prostate Cancer: results from a phase 3, prospective, Multicentre Study (LIGHTHOUSE). Eur Urol 84(4):361–370

    Article  CAS  PubMed  Google Scholar 

  7. Han S, Woo S, Kim YJ, Suh CH (2018) Impact of 68Ga-PSMA PET on the management of patients with prostate Cancer: a systematic review and Meta-analysis. Eur Urol 74(2):179–190

    Article  CAS  PubMed  Google Scholar 

  8. Mottet N, Conford P, van den Bergh RCN, Briers E, Eberli D, De Meerleer G et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer [Internet]. [cited 2023 Nov 22]. http://uroweb.org/guidelines/compilations-of-all-guidelines/

  9. Lowrance W, Dreicer R, Jarrard DF, Scarpato KR, Kim SK, Kirkby E et al (2023) Updates to advanced prostate Cancer: AUA/SUO Guideline (2023). J Urol 209(6):1082–1090

    Article  PubMed  Google Scholar 

  10. de Galiza Barbosa F, Queiroz MA, Nunes RF, Costa LB, Zaniboni EC, Marin JFG et al (2020) Nonprostatic diseases on PSMA PET imaging: a spectrum of benign and malignant findings. Cancer Imaging 20(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rauscher I, Krönke M, König M, Gafita A, Maurer T, Horn T et al (2020) Matched-pair comparison of (68)Ga-PSMA-11 PET/CT and (18)F-PSMA-1007 PET/CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. J Nucl Med 61(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rowe SP, Pienta KJ, Pomper MG, Gorin MA, PSMA-RADS Version (2018) 1.0: a step towards standardizing the interpretation and reporting of PSMA-targeted PET imaging studies. Eur Urol 73(4):485–487

    Article  PubMed  Google Scholar 

  13. Werner RA, Hartrampf PE, Fendler WP, Serfling SE, Derlin T, Higuchi T et al (2023) Eur Urol 84(5):491–502Prostate-specific Membrane Antigen Reporting and Data System Version 2.0

  14. Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M et al (2018) Prostate Cancer molecular imaging standardized evaluation (PROMISE): proposed miTNM classification for the interpretation of PSMA-Ligand PET/CT. J Nucl Med 59(3):469–478

    Article  PubMed  Google Scholar 

  15. Ceci F, Oprea-Lager DE, Emmett L, Adam JA, Bomanji J, Czernin J et al (2021) E-PSMA: the EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur J Nucl Med Mol Imaging 48(5):1626–1638

    Article  PubMed  PubMed Central  Google Scholar 

  16. McInnes MDF, Moher D, Thombs BD, McGrath TA, Bossuyt PM, and the, Group PRISMA-DTA et al (2018) Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA. ;319(4):388–96

  17. Woo S, Freedman D, Becker AS, Leithner D, Mayerhoefer M, Arita Y et al Equivocal bone lesions on PSMA PET/CT: How common are they and how often are they metastases? A systematic review and meta-analysis. PROSPERO 2023 CRD42023486697 [Internet]. [cited 2023 Dec 10]. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023486697

  18. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372:n160

    Article  PubMed  PubMed Central  Google Scholar 

  19. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536

    Article  PubMed  Google Scholar 

  20. Barker TH, Migliavaca CB, Stein C, Colpani V, Falavigna M, Aromataris E et al (2021) Conducting proportional meta-analysis in different types of systematic reviews: a guide for synthesisers of evidence. BMC Med Res Methodol 21(1):189

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee J, Kim KW, Choi SH, Huh J, Park SH (2015) Systematic review and Meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical Researchers-Part II. Statistical methods of Meta-Analysis. Korean J Radiol 16(6):1188–1196

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR (2021) Introduction to Meta-Analysis. Wiley, p 547

  23. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arnfield EG, Thomas PA, Roberts MJ, Pelecanos AM, Ramsay SC, Lin CY et al (2021) Clinical insignificance of [(18)F]PSMA-1007 avid non-specific bone lesions: a retrospective evaluation. Eur J Nucl Med Mol Imaging 48(13):4495–4507

    Article  CAS  PubMed  Google Scholar 

  25. Bohil A, Nagabhushan S, Vinjamuri S (2021) F18 PSMA 1007 PET/CT experience with equivocal lesions in prostate cancer: has the time come for PSMA-RADS? J Nucl Med 62(Supplement 1):1343

    Google Scholar 

  26. Dietlein F, Kobe C, Hohberg M, Zlatopolskiy BD, Krapf P, Endepols H et al (2020) Intraindividual comparison of (18)F-PSMA-1007 with Renally Excreted PSMA ligands for PSMA PET Imaging in patients with relapsed prostate Cancer. J Nucl Med 61(5):729–734

    Article  CAS  PubMed  Google Scholar 

  27. Ettala O, Anttinen M, Tommila T, Malaspina S, Kemppainen J, Seppanen M et al (2023) How should lesions without anatomical correspondence in 18F-PSMA-1007 PET/CT be interpreted-a PROSTAGE follow-up study. Eur Urol 83:S158–S158

    Article  Google Scholar 

  28. Foley R, Redman S, Graham R, Little D (2021) Initial experience of [18F] PSMA PET/CT Imaging in a District General Hospital. Nucl Med Commun 42(10):1175–1176

    Google Scholar 

  29. Grünig H, Maurer A, Thali Y, Kovacs Z, Strobel K, Burger IA et al (2021) Focal unspecific bone uptake on [(18)F]-PSMA-1007 PET: a multicenter retrospective evaluation of the distribution, frequency, and quantitative parameters of a potential pitfall in prostate cancer imaging. Eur J Nucl Med Mol Imaging 48(13):4483–4494

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hoberück S, Löck S, Borkowetz A, Sommer U, Winzer R, Zöphel K et al (2021) Intraindividual comparison of [(68) Ga]-Ga-PSMA-11 and [(18)F]-F-PSMA-1007 in prostate cancer patients: a retrospective single-center analysis. EJNMMI Res 11(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  31. Janssen JC, Meißner S, Woythal N, Prasad V, Brenner W, Diederichs G et al (2018) Comparison of hybrid (68)Ga-PSMA-PET/CT and (99m)Tc-DPD-SPECT/CT for the detection of bone metastases in prostate cancer patients: additional value of morphologic information from low dose CT. Eur Radiol 28(2):610–619

    Article  PubMed  Google Scholar 

  32. Knappe L, Rominger A, Afshar-Oromieh A, Alberts I (2022) Follow-up of presumably unspecific bone uptakes in F18PSMA-1007-PET/CT. Eur J Nucl Med Mol Imaging 49(SUPPL 1):S500–S500

    Google Scholar 

  33. Kuten J, Dekalo S, Mintz I, Yossepowitch O, Mano R, Even-Sapir E (2021) The significance of equivocal bone findings in staging PSMA imaging in the preoperative setting: validation of the PSMA-RADS version 1.0. EJNMMI Res 11(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  34. Letang A, Crombé A, Rousseau C, Sargos P, Merlin C, Cantarel C et al (2022) Bone uptake in prostate Cancer patients: Diagnostic performances of PSMA-RADS v1.0, Clinical, Biological, and 68 Ga-PSMA-11 PET features to Predict Metastasis after biochemical recurrence. Clin Nucl Med 47(8):e529–e539

    Article  PubMed  Google Scholar 

  35. Mihatsch PW, Beissert M, Pomper MG, Bley TA, Seitz AK, Kübler H et al (2022) Changing threshold-based segmentation has no relevant Impact on Semi-quantification in the context of structured reporting for PSMA-PET/CT. Cancers (Basel). ;14(2)

  36. Orevi M, Ben-Haim S, Abourbeh G, Chicheportiche A, Mishani E, Yutkin V et al (2022) False positive findings of [(18)F]PSMA-1007 PET/CT in patients after radical prostatectomy with undetectable serum PSA levels. Front Surg 9:943760

    Article  PubMed  PubMed Central  Google Scholar 

  37. Paone G, Cuzzocrea M, Treglia G, Ruberto-Macchi T, Raditckova-Sarnelli M, Ceriani L et al (2022) Diagnostic accuracy of [F-18] PSMA-1007 PET/CT in intermediate and high risk prostate cancer primary staging: a single center retrospective analysis of semiquantitative PET/CT parameters, bio-distribution and clinical significance of potential equivocal non-specific findings (NS-F). Eur J Nucl Med Mol Imaging 49(SUPPL 1):S485–S485

    Google Scholar 

  38. Phelps TE, Harmon SA, Mena E, Lindenberg L, Shih JH, Citrin DE et al (2023) Predicting outcomes of Indeterminate Bone lesions on (18)F-DCFPyL PSMA PET/CT scans in the setting of high-risk primary or recurrent prostate Cancer. J Nucl Med 64(3):395–401

    Article  CAS  PubMed  Google Scholar 

  39. Pyka T, Okamoto S, Dahlbender M, Tauber R, Retz M, Heck M et al (2016) Comparison of bone scintigraphy and (68)Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging 43(12):2114–2121

    Article  CAS  PubMed  Google Scholar 

  40. Rowe SP, Li X, Trock BJ, Werner RA, Frey S, DiGianvittorio M et al (2020) Prospective Comparison of PET Imaging with PSMA-Targeted (18)F-DCFPyL versus na(18)F for bone lesion detection in patients with metastatic prostate Cancer. J Nucl Med 61(2):183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seifert R, Telli T, Opitz M, Barbato F, Berliner C, Nader M et al (2023) Unspecific (18)F-PSMA-1007 bone uptake evaluated through PSMA-11 PET, bone scanning, and MRI triple validation in patients with biochemical recurrence of prostate Cancer. J Nucl Med 64(5):738–743

    Article  CAS  PubMed  Google Scholar 

  42. Shanmugasundaram R, Roberts M, Wong V, Arianayagam M, Canagasingham B, Ferguson R et al (2020) Optimal detection of bone metastasis in primary staging of prostate cancer: direct comparison of 68-Gallium prostate specific membrane Antigen (PSMA) with bone scan in 532 patients. BJU Int 125:54–54

    Google Scholar 

  43. Simsek DH, Sanli Y, Engin MN, Erdem S, Sanli O (2021) Detection of metastases in newly diagnosed prostate cancer by using 68Ga-PSMA PET/CT and its relationship with modified D’Amico risk classification. Eur J Nucl Med Mol Imaging 48(5):1639–1649

    Article  CAS  PubMed  Google Scholar 

  44. Spurr M, Kimura M, Kulshresthra R, Kabala J, Challapalli A, Sakthithasan M (2022) Equivocal Radiotracer Uptake on 18F-PSMA-1007 PET/CT in patients with prostate Cancer. Intern Med J 52:41–42

    Google Scholar 

  45. Vollnberg B, Alberts I, Genitsch V, Rominger A, Afshar-Oromieh A (2022) Assessment of malignancy and PSMA expression of uncertain bone foci in [(18)F]PSMA-1007 PET/CT for prostate cancer-a single-centre experience of PET-guided biopsies. Eur J Nucl Med Mol Imaging 49(11):3910–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wondergem M, van der Zant FM, Broos WAM, Knol RJJ (2021) Matched-pair comparison of (18)F-DCFPyL PET/CT and (18)F-PSMA-1007 PET/CT in 240 prostate Cancer patients: Interreader Agreement and Lesion Detection Rate of suspected lesions. J Nucl Med 62(10):1422–1429

    Article  CAS  PubMed  Google Scholar 

  47. Yin Y, Werner RA, Higuchi T, Lapa C, Pienta KJ, Pomper MG et al (2019) Follow-up of lesions with equivocal Radiotracer Uptake on PSMA-Targeted PET in patients with prostate Cancer: predictive values of the PSMA-RADS-3A and PSMA-RADS-3B categories. J Nucl Med 60(4):511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zacho HD, Ravn S, Afshar-Oromieh A, Fledelius J, Ejlersen JA, Petersen LJ (2020) Added value of (68)Ga-PSMA PET/CT for the detection of bone metastases in patients with newly diagnosed prostate cancer and a previous (99m)tc bone scintigraphy. EJNMMI Res 10(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schöder H, Hope TA, Knopp M, Kelly WK, Michalski JM, Lerner SP et al (2022) Considerations on integrating prostate-specific membrane Antigen Positron Emission Tomography Imaging into clinical prostate Cancer trials by national clinical trials Network Cooperative groups. J Clin Oncol 40(13):1500–1505

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cardinale J, Schäfer M, Benešová M, Bauder-Wüst U, Leotta K, Eder M et al (2017) Preclinical evaluation of 18F-PSMA-1007, a New Prostate-Specific Membrane Antigen Ligand for prostate Cancer imaging. J Nucl Med 58(3):425–431

    Article  CAS  PubMed  Google Scholar 

  51. Eder M, Schäfer M, Bauder-Wüst U, Hull WE, Wängler C, Mier W et al (2012) 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem 23(4):688–697

    Article  CAS  PubMed  Google Scholar 

  52. Rahbar K, Weckesser M, Ahmadzadehfar H, Schäfers M, Stegger L, Bögemann M (2018) Advantage of 18F-PSMA-1007 over 68Ga-PSMA-11 PET imaging for differentiation of local recurrence vs. urinary tracer excretion. Eur J Nucl Med Mol Imaging 45(6):1076–1077

    Article  CAS  PubMed  Google Scholar 

  53. Exterkate L, Hermsen R, Küsters-Vandevelde HVN, Prette JF, Baas DJH, Somford DM et al (2023) Head-to-Head comparison of 18F-PSMA-1007 Positron Emission Tomography/Computed tomography and Multiparametric Magnetic Resonance Imaging with whole-mount histopathology as reference in localisation and staging of primary prostate Cancer. Eur Urol Oncol 6(6):574–581

    Article  PubMed  Google Scholar 

  54. Kerkmeijer LGW, Groen VH, Pos FJ, Haustermans K, Monninkhof EM, Smeenk RJ et al (2021) Focal Boost to the Intraprostatic Tumor in External Beam Radiotherapy for patients with localized prostate Cancer: results from the FLAME Randomized Phase III Trial. J Clin Oncol 39(7):787–796

    Article  CAS  PubMed  Google Scholar 

  55. Bauckneht M, Miceli A, Signori A, Albano D, Capitanio S, Piva R et al (2023) Combined forced diuresis and late acquisition on [68Ga]Ga-PSMA-11 PET/CT for biochemical recurrent prostate cancer: a clinical practice-oriented study. Eur Radiol 33(5):3343–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spratt DE, Liu VYT, Michalski J, Davicioni E, Berlin A, Simko JP et al (2023) Genomic classifier performance in intermediate-risk prostate Cancer: results from NRG Oncology/RTOG 0126 Randomized Phase 3 Trial. Int J Radiation Oncology*Biology*Physics 117(2):370–377

    Article  Google Scholar 

  57. Chiu LW, Lawhn-Heath C, Behr SC, Juarez R, Perez PM, Lobach I et al (2020) Factors Predicting Metastatic Disease in (68)Ga-PSMA-11 PET-Positive osseous lesions in prostate Cancer. J Nucl Med 61(12):1779–1785

    Article  CAS  PubMed  Google Scholar 

  58. Rosenkrantz AB, Kim S, Lim RP, Hindman N, Deng FM, Babb JS et al (2013) Prostate cancer localization using multiparametric MR imaging: comparison of prostate imaging reporting and data system (PI-RADS) and likert scales. Radiology 269(2):482–492

    Article  PubMed  Google Scholar 

  59. Woo S, Editorial Comment (2023) PRECISE-The precisely right thing to Use when interpreting prostate MRI for active surveillance? AJR Am J Roentgenol 221(5):660

    Article  PubMed  Google Scholar 

  60. Grawe F, Blom F, Winkelmann M, Burgard C, Schmid-Tannwald C, Unterrainer LM et al (2023) Reliability and practicability of PSMA-RADS 1.0 for structured reporting of PSMA-PET/CT scans in prostate cancer patients. Eur Radiol

  61. Suh CH, Yun SJ (2019) Diagnostic outcome of image-guided percutaneous core needle biopsy of sclerotic bone lesions: a Meta-analysis. AJR Am J Roentgenol 212(3):625–631

    Article  PubMed  Google Scholar 

  62. Chen MY, Franklin A, Yaxley J, Gianduzzo T, McBean R, Wong D et al (2020) Solitary rib lesions showing prostate-specific membrane antigen (PSMA) uptake in pre-treatment staging (68) Ga-PSMA-11 positron emission tomography scans for men with prostate cancer: benign or malignant? BJU Int 126(3):396–401

    Article  CAS  PubMed  Google Scholar 

  63. Woo S, Kim SY, Kim SH, Cho JY, JOURNAL CLUB (2016) Identification of bone metastasis with routine prostate MRI: a study of patients with newly diagnosed prostate Cancer. AJR Am J Roentgenol 206(6):1156–1163

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Study conceptualization: SW, HAV. Data acquisition: SW, DF, HAV. Data analysis: SW. Data interpretation: SW, ASB, DL, MEM, KPF, YA, SH, IAB, SST, DRW, MJZ, HAV. Drafting of manuscript: SW. Critical revision of manuscript: SW, ASB, DL, MEM, KPF, YA, SH, IAB, SST, DRW, MJZ, HAV. Supervision: HAV.

Corresponding author

Correspondence to Sungmin Woo.

Ethics declarations

Ethical approval

This study did not involve individual human participant data as it was a systematic review and meta-analysis using only study-level summary data provided openly in the literature. Nevertheless, it was conducted in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki, its subsequent amendments, or comparable ethical standards.

Informed consent

This study did not involve individual human participant data as it was a systematic review and meta-analysis using only study-level summary data provided openly in the literature. As such, the need for informed consent was not applicable.

Competing interests

MEM received honoraria for lectures from Siemens, GE, and BM but unrelated to the current work. KPF is a co-investigator on “Optimizing timing of rhPSMA-7.3 (18F), for assessing site(s) of recurrent disease following radical prostatectomy” (PI Herbert Lepor) but does not receive any salary support and was unrelated to the current work. IAB has received research support from GE Healthcare and Bayer, speaker honorarium from GE-Healthcare, Baer, Astellas, Janssen and Novartis, and institutionally compensated advisory role for Novartis, Merck & Cie and Ratio Radiotherapeutics but unrelated to the current work. DRW has received consulting fees from Leap Therapeutics, Foundation Medicine, Pfizer, Janssen, Sanofi, Lilly, Labcorp, Myovant, Bayer, AstraZeneca, Accutar and has received travel funding from Pfizer and Bayer but unrelated to the current work. The other authors have nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, S., Freedman, D., Becker, A.S. et al. Equivocal bone lesions on PSMA PET/CT: systematic review and meta-analysis on their prevalence and malignancy rate. Clin Transl Imaging (2024). https://doi.org/10.1007/s40336-024-00631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40336-024-00631-6

Keywords

Navigation