Skip to main content

Advertisement

Log in

The synergistic effect of PET/MRI in whole-body oncologic imaging: an Expert Review

  • Expert Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography (PET)/magnetic resonance imaging (MRI) is a hybrid imaging modality that combines MRI and PET imaging into a comprehensive modality for oncologic evaluation. MRI contributes with excellent soft tissue contrast resolution along with multiparametric information and PET with exquisite high sensitivity. Together they facilitate lesion detection and characterization, TNM staging, and assessment of treatment response. This review aimed to survey the published PET/MRI research findings for body oncology and reflect upon them.

Methods

This narrative overview of the literature summarizes the findings of published research articles on PET/MRI for oncology (excluding neurologic applications) indexed in the online databases Google Scholar, PubMed, and Scopus, from its commercial introduction in 2011 to the present (2023).

Results

The theoretical advantages of PET/MRI have been demonstrated in practice with studies showing PET/MRI has comparable or superior sensitivity and specificity to PET/CT and MRI in most cancers, with the advantage of being acquired in a single session. Limitations include the comparatively lesser availability and the higher cost, both of which are predicted to be offset by increased adoption.

Conclusions

PET/MRI has the potential to become the standard test for staging and post-treatment evaluation of many primary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Delso G, Fürst S, Jakoby B et al (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52:1914–1922

    Article  PubMed  Google Scholar 

  2. Judenhofer MS, Wehrl HF, Newport DF et al (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14:459–465

    Article  CAS  PubMed  Google Scholar 

  3. Düppenbecker PM, Weissler B, Gebhardt P et al (2016) Development of an MRI-compatible digital SiPM detector stack for simultaneous PET/MRI. Biomed Phys Eng Express 2:015010

    Article  PubMed  PubMed Central  Google Scholar 

  4. Buchbender C, Heusner TA, Lauenstein TC et al (2012) Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 53:1244–1252

    Article  PubMed  Google Scholar 

  5. Torres Espallardo I (2017) PET/TAC: bases físicas, instrumentación y avances. Radiologia 59:431–445

    Article  CAS  PubMed  Google Scholar 

  6. Sureshbabu W, Mawlawi O (2005) PET/CT imaging artifacts. J Nucl Med Technol 33:156–161

    PubMed  Google Scholar 

  7. Blake MA, Singh A, Setty BN et al (2006) Pearls and pitfalls in interpretation of abdominal and pelvic PET-CT. Radiographics 26:1335–1353

    Article  PubMed  Google Scholar 

  8. Shah SN, Huang SS (2015) Hybrid PET/MR imaging: physics and technical considerations. Abdom Imaging 40:1358–1365

    Article  PubMed  Google Scholar 

  9. Manber R, Thielemans K, Hutton BF et al (2015) Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med 56:890–896

    Article  PubMed  Google Scholar 

  10. Fuin N, Catalano OA, Scipioni M et al (2018) Concurrent Respiratory Motion Correction of Abdominal PET and Dynamic Contrast-Enhanced-MRI Using a Compressed Sensing Approach. J Nucl Med 59:1474–1479

    Article  PubMed  PubMed Central  Google Scholar 

  11. Catalano OA, Umutlu L, Fuin N et al (2018) Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). Eur J Nucl Med Mol Imaging 45:2147–2154

    Article  CAS  PubMed  Google Scholar 

  12. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    Article  PubMed  Google Scholar 

  13. Ichimiya Y, Alluri K, Marcus C et al (2015) Imaging modality utilization trends in patients with stage III-IV oropharyngeal squamous cell carcinoma. Am J Nucl Med Mol Imaging 5:154–161

    PubMed  PubMed Central  Google Scholar 

  14. Boss A, Stegger L, Bisdas S et al (2011) Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 21:1439–1446

    Article  PubMed  Google Scholar 

  15. Patel LD, Bridgham K, Ciriello J et al (2022) PET/MR imaging in evaluating treatment failure of head and neck malignancies: a neck imaging reporting and data system-based study. AJNR Am J Neuroradiol 43:435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park J, Pak K, Yun TJ et al (2020) Diagnostic Accuracy and Confidence of [18F] FDG PET/MRI in comparison with PET or MRI alone in Head and Neck Cancer. Sci Rep 10:9490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loeffelbein DJ, Souvatzoglou M, Wankerl V et al (2014) Diagnostic value of retrospective PET-MRI fusion in head-and-neck cancer. BMC Cancer 14:846

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huang S-H, Chien C-Y, Lin W-C et al (2011) A comparative study of fused FDG PET/MRI, PET/CT, MRI, and CT imaging for assessing surrounding tissue invasion of advanced buccal squamous cell carcinoma. Clin Nucl Med 36:518–525

    Article  PubMed  Google Scholar 

  19. Sekine T (2017) PET+ MR versus PET/CT in the initial staging of head and neck cancer, using a trimodality PET/CT+ MR system. Clin Imaging 42:232–239

    Article  PubMed  Google Scholar 

  20. Sheng-Chieh C-H, Yeh T-C, Yen S-H et al (2018) Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 45:1297–1308

    Article  Google Scholar 

  21. Schaarschmidt BM, Heusch P, Buchbender C et al (2016) Locoregional tumour evaluation of squamous cell carcinoma in the head and neck area: a comparison between MRI, PET/CT and integrated PET/MRI. Eur J Nucl Med Mol Imaging 43:92–102

    Article  CAS  PubMed  Google Scholar 

  22. Chan S-C, Yeh C-H, Yen T-C et al (2018) Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 45:1297–1308

    Article  PubMed  Google Scholar 

  23. Hayashi K, Kikuchi M, Imai Y et al (2020) Clinical value of fused PET/MRI for surgical planning in patients with oral/oropharyngeal carcinoma. Laryngoscope 130:367–374

    Article  PubMed  Google Scholar 

  24. Samolyk-Kogaczewska N, Sierko E, Dziemianczyk-Pakiela D et al (2020) Usefulness of hybrid PET/MRI in clinical evaluation of head and neck cancer patients. Cancers (Basel) 12:511

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Hagiwara M, Givi B et al (2020) Assessment of metastatic lymph nodes in head and neck squamous cell carcinomas using simultaneous 18F-FDG-PET and MRI. Sci Rep 10:20764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Queiroz MA, Huellner MW (2015) PET/MR in cancers of the head and neck. Semin Nucl Med 45:248–265

    Article  PubMed  Google Scholar 

  27. Ferlito A, Shaha AR, Silver CE et al (2001) Incidence and sites of distant metastases from head and neck cancer. ORL J Otorhinolaryngol Relat Spec 63:202–207

    Article  CAS  PubMed  Google Scholar 

  28. Zhang C, O’Shea A, Parente CA et al (2021) Evaluation of the diagnostic performance of positron emission tomography/magnetic resonance for the diagnosis of liver metastases. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000782

    Article  PubMed  PubMed Central  Google Scholar 

  29. Catalano OA, Nicolai E, Rosen BR et al (2015) Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer 112:1452–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Furtado FS, Wu MZ, Esfahani SA et al (2022) Positron emission tomography/magnetic resonance imaging versus the standard of care imaging in the diagnosis of peritoneal carcinomatosis. Ann Surg. https://doi.org/10.1097/SLA.0000000000005418

    Article  PubMed  Google Scholar 

  31. Amorim BJ, Hong TS, Blaszkowsky LS et al (2019) Clinical impact of PET/MR in treated colorectal cancer patients. Eur J Nucl Med Mol Imaging 46:2260–2269

    Article  PubMed  Google Scholar 

  32. Ferrone C, Goyal L, Qadan M et al (2020) Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 47:1871–1884

    Article  CAS  PubMed  Google Scholar 

  33. Biondetti P, Vangel MG, Lahoud RM et al (2021) PET/MRI assessment of lung nodules in primary abdominal malignancies: sensitivity and outcome analysis. Eur J Nucl Med Mol Imaging 48:1976–1986

    Article  CAS  PubMed  Google Scholar 

  34. Ettinger DS, Akerley W, Bepler G et al (2010) Non–small cell lung cancer. J Natl Compr Canc Netw 8:740–801

    Article  CAS  PubMed  Google Scholar 

  35. Lee SM, Goo JM, Park CM et al (2016) Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol 26:3850–3857

    Article  PubMed  Google Scholar 

  36. Mayerhoefer ME, Prosch H, Beer L et al (2020) PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur J Nucl Med Mol Imaging 47:51–60

    Article  CAS  PubMed  Google Scholar 

  37. Messerli M (2019) Value of PET/MRI for assessing tumor resectability in NSCLCdIntra-individual comparison with PET/CT. The Br J Radiol. https://doi.org/10.1259/bjr.20180379

    Article  PubMed  Google Scholar 

  38. Fraioli F, Screaton NJ, Janes SM et al (2015) Non-small-cell lung cancer resectability: diagnostic value of PET/MR. Eur J Nucl Med Mol Imaging 42:49–55

    Article  CAS  PubMed  Google Scholar 

  39. Riihimäki M, Hemminki A, Fallah M et al (2014) Metastatic sites and survival in lung cancer. Lung Cancer 86:78–84

    Article  PubMed  Google Scholar 

  40. Riihimäki M, Thomsen H, Sundquist K et al (2018) Clinical landscape of cancer metastases. Cancer Med 7:5534–5542

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zeng F, Nogami M, Ueno YR et al (2020) Diagnostic performance of zero-TE lung MR imaging in FDG PET/MRI for pulmonary malignancies. Eur Radiol 30:4995–5003

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rausch I, Quick HH, Cal-Gonzalez J et al (2017) Technical and instrumentational foundations of PET/MRI. Eur J Radiol 94:A3–A13

    Article  PubMed  Google Scholar 

  43. Regier M, Schwarz D, Henes FO et al (2011) Diffusion-weighted MR-imaging for the detection of pulmonary nodules at 1.5 Tesla: Intraindividual comparison with multidetector computed tomography. J Med Imaging Radiat Oncol 55:266–274

    Article  PubMed  Google Scholar 

  44. Spick C, Herrmann K, Czernin J (2016) 18F-FDG PET/CT and PET/MRI perform equally well in cancer: Evidence from studies on more than 2,300 patients. J Nucl Med 57:420–430

    Article  CAS  PubMed  Google Scholar 

  45. Burris NS, Johnson KM, Larson PEZ et al (2016) Detection of small pulmonary nodules with ultrashort echo time sequences in oncology patients by using a PET/MR system. Radiology 278:239–246

    Article  PubMed  Google Scholar 

  46. Chandarana H, Heacock L, Rakheja R et al (2013) Pulmonary nodules in patients with primary malignancy: comparison of hybrid PET/MR and PET/CT imaging. Radiology 268:874–881

    Article  PubMed  Google Scholar 

  47. Rauscher I, Eiber M, Fürst S et al (2014) PET/MR imaging in the detection and characterization of pulmonary lesions: Technical and diagnostic evaluation in comparison to PET/CT. J Nucl Med 55:724–729

    Article  CAS  PubMed  Google Scholar 

  48. Sawicki LM, Grueneisen J, Buchbender C et al (2016) Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. J Nucl Med 57:582–586

    Article  CAS  PubMed  Google Scholar 

  49. Bennani-Baiti B, Bennani-Baiti N, Baltzer PA (2016) Diagnostic performance of breast magnetic resonance imaging in non-calcified equivocal breast findings: Results from a systematic review and meta-analysis. PLoS ONE 11:e0160346

    Article  PubMed  PubMed Central  Google Scholar 

  50. Groheux D, Hindié E, Espié M, Ulaner GA (2021) Letter to the editor: PET/CT in locally advanced breast cancer: Time for a guideline change? J Natl Compr Canc Netw. https://doi.org/10.6004/jnccn.2021.7050

    Article  PubMed  Google Scholar 

  51. Botsikas D, Bagetakos I, Picarra M et al (2019) What is the diagnostic performance of 18-FDG-PET/MR compared to PET/CT for the N- and M- staging of breast cancer? Eur Radiol 29:1787–1798

    Article  PubMed  Google Scholar 

  52. Catalano OA, Daye D, Signore A et al (2017) Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol 51:281–288

    Article  CAS  PubMed  Google Scholar 

  53. Taneja S, Jena A, Goel R et al (2014) Simultaneous whole-body 18F-FDG PET-MRI in primary staging of breast cancer: a pilot study. Eur J Radiol 83:2231–2239

    Article  PubMed  Google Scholar 

  54. Han S, Choi JY (2021) Impact of 18F-FDG PET, PET/CT, and PET/MRI on staging and management as an initial staging modality in breast cancer: a systematic review and meta-analysis. Clin Nucl Med 46:271–282

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sawicki LM, Grueneisen J, Schaarschmidt BM et al (2016) Evaluation of 18F-FDG PET/MRI, 18F-FDG PET/CT, MRI, and CT in whole-body staging of recurrent breast cancer. Eur J Radiol 85:459–465

    Article  PubMed  Google Scholar 

  56. Incoronato M, Grimaldi AM, Mirabelli P et al (2019) Circulating miRNAs in untreated breast cancer: an exploratory multimodality Morpho-functional study. Cancers (Basel) 11:876

    Article  PubMed  Google Scholar 

  57. Incoronato M, Mirabelli P, Catalano O et al (2014) CA15-3 is a useful serum tumor marker for diagnostic integration of hybrid positron emission tomography with integrated computed tomography during follow-up of breast cancer patients. BMC Cancer 14:356

    Article  PubMed  PubMed Central  Google Scholar 

  58. Incoronato M, Grimaldi AM, Cavaliere C et al (2018) Relationship between functional imaging and immunohistochemical markers and prediction of breast cancer subtype: a PET/MRI study. Eur J Nucl Med Mol Imaging 45:1680–1693

    Article  CAS  PubMed  Google Scholar 

  59. Groheux D, Cochet A, Humbert O et al (2016) 18F-FDG PET/CT for staging and restaging of breast cancer. J Nucl Med 57(Suppl 1):17S-26S

    Article  CAS  PubMed  Google Scholar 

  60. Backhaus P, Burg MC, Roll W et al (2022) Simultaneous FAPI PET/MRI targeting the fibroblast-activation protein for breast cancer. Radiology 302:39–47

    Article  PubMed  Google Scholar 

  61. Backhaus P, Burg MC, Asmus I, et al (2022) Initial results of FAPI-PET/MRI to assess response to neoadjuvant chemotherapy in breast cancer. J Nucl Med

  62. Razumilava N, Gores GJ (2014) Cholangiocarcinoma. Lancet 383:2168–2179

    Article  PubMed  PubMed Central  Google Scholar 

  63. DeOliveira ML, Cunningham SC, Cameron JL et al (2007) Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg 245:755–762

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hennedige TP, Neo WT, Venkatesh SK (2014) Imaging of malignancies of the biliary tract- an update. Cancer Imaging 14:14

    PubMed  PubMed Central  Google Scholar 

  65. Kim JY, Kim M-H, Lee TY et al (2008) Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol 103:1145–1151

    Article  PubMed  Google Scholar 

  66. Seo S, Hatano E, Higashi T et al (2008) Fluorine-18 fluorodeoxyglucose positron emission tomography predicts lymph node metastasis, P-glycoprotein expression, and recurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery 143:769–777

    Article  PubMed  Google Scholar 

  67. Benson AB, D’Angelica MI, Abbott DE et al (2021) Hepatobiliary cancers, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 19:541–565

    Article  PubMed  Google Scholar 

  68. Siripongsatian D, Promteangtrong C, Kunawudhi A et al (2022) Comparisons of quantitative parameters of Ga-68-labelled fibroblast activating protein inhibitor (FAPI) PET/CT and [18F]F-FDG PET/CT in patients with liver malignancies. Mol Imaging Biol. https://doi.org/10.1007/s11307-022-01732-2

    Article  PubMed  PubMed Central  Google Scholar 

  69. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70:7–30

    Article  PubMed  Google Scholar 

  70. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    Article  PubMed  Google Scholar 

  71. Tempero MA, Malafa MP, Al-Hawary M, et al (2020) NCCN Guidelines Version 1.2021 Pancreatic Adenocarcinoma. In: National Comprehensive Cancer Network. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Accessed 30 Jan 2021

  72. Furtado FS, Ferrone CR, Lee SI et al (2021) Impact of PET/MRI in the treatment of pancreatic adenocarcinoma: a retrospective cohort study. Mol Imaging Biol 23:456–466

    Article  CAS  PubMed  Google Scholar 

  73. Panda A, Garg I, Truty MJ et al (2021) Borderline resectable and locally advanced pancreatic cancer: FDG PET/MRI and CT tumor metrics for assessment of pathologic response to neoadjuvant therapy and prediction of survival. AJR Am J Roentgenol 217:730–740

    Article  PubMed  Google Scholar 

  74. Shou Y, Xue Q, Yuan J, Zhao J (2021) 68Ga-FAPI-04 PET/MR is helpful in differential diagnosis of pancreatitis from pancreatic malignancy compared to 18F-FDG PET/CT: a case report. Eur J Hybrid Imaging 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kang B, Lee JM, Song YS et al (2016) Added value of integrated whole-body PET/MRI for evaluation of colorectal cancer: comparison with contrast-enhanced MDCT. AJR Am J Roentgenol 206:W10-20

    Article  PubMed  Google Scholar 

  76. Paspulati RM, Partovi S, Herrmann KA et al (2015) Comparison of hybrid FDG PET/MRI compared with PET/CT in colorectal cancer staging and restaging: a pilot study. Abdom Imaging 40:1415–1425

    Article  PubMed  Google Scholar 

  77. Catalano OA, Lee SI, Parente C et al (2021) Improving staging of rectal cancer in the pelvis: the role of PET/MRI. Eur J Nucl Med Mol Imaging 48:1235–1245

    Article  PubMed  Google Scholar 

  78. Lee DH, Lee JM, Hur BY et al (2016) Colorectal cancer liver metastases: diagnostic performance and prognostic value of PET/MR imaging. Radiology 280:782–792

    Article  PubMed  Google Scholar 

  79. Yoon JH, Lee JM, Chang W et al (2020) Initial M staging of rectal cancer: FDG PET/MRI with a hepatocyte-specific contrast agent versus contrast-enhanced CT. Radiology 294:310–319

    Article  PubMed  Google Scholar 

  80. Hugen N, van de Velde CJH, de Wilt JHW, Nagtegaal ID (2014) Metastatic pattern in colorectal cancer is strongly influenced by histological subtype. Ann Oncol 25:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Disibio G, French SW (2008) Metastatic patterns of cancers: results from a large autopsy study. Arch Pathol Lab Med 132:931–939

    Article  PubMed  Google Scholar 

  82. Furtado FS, Suarez-Weiss KE, Vangel M et al (2021) Clinical impact of PET/MRI in oligometastatic colorectal cancer. Br J Cancer. https://doi.org/10.1038/s41416-021-01494-8

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pang Y, Zhao L, Luo Z et al (2021) Comparison of 68Ga-FAPI and 18F-FDG uptake in gastric, duodenal, and colorectal cancers. Radiology 298:393–402

    Article  PubMed  Google Scholar 

  84. Shah SN, Oldan JD (2017) PET/MR imaging of multiple myeloma. Magn Reson Imaging Clin N Am 25:351–365

    Article  PubMed  Google Scholar 

  85. Purohit BS, Dulguerov P, Burkhardt K, Becker M (2014) Dedifferentiated laryngeal chondrosarcoma: combined morphologic and functional imaging with positron-emission tomography/magnetic resonance imaging. Laryngoscope 124:E274–E277

    Article  PubMed  Google Scholar 

  86. Christian A, Heusner TC, Lauenstein A, Bockisch G (2012) Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 53:1244–1252

    Article  Google Scholar 

  87. Eiber M, Takei T, Souvatzoglou M et al (2014) Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med 55:191–197

    Article  PubMed  Google Scholar 

  88. Mick CG, James T, Hill JD et al (2014) Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J Roentgenol 203:263–271

    Article  PubMed  Google Scholar 

  89. Partovi S, Kohan AA, Zipp L et al (2014) Hybrid PET/MR imaging in two sarcoma patients - clinical benefits and implications for future trials. Int J Clin Exp Med 7:640–648

    PubMed  PubMed Central  Google Scholar 

  90. Holzapfel K, Regler J, Baum T et al (2015) Local staging of soft-tissue sarcoma: Emphasis on assessment of neurovascular encasement-value of MR imaging in 174 confirmed cases. Radiology 275:501–509

    Article  PubMed  Google Scholar 

  91. Elmanzalawy A, Vali R, Chavhan GB et al (2020) The impact of 18F-FDG PET on initial staging and therapy planning of pediatric soft-tissue sarcoma patients. Pediatr Radiol 50:252–260

    Article  PubMed  Google Scholar 

  92. Pace L, Nicolai E, Luongo A et al (2014) Comparison of whole-body PET/CT and PET/MRI in breast cancer patients: lesion detection and quantitation of 18F-deoxyglucose uptake in lesions and in normal organ tissues. Eur J Radiol 83:289–296

    Article  PubMed  Google Scholar 

  93. Kratochwil C, Flechsig P, Lindner T (2019) 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med 60:801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fukuda T, Huang M, Janardhanan A et al (2019) Correlation of bone marrow cellularity and metabolic activity in healthy volunteers with simultaneous PET/MR imaging. Skeletal Radiol 48:527–534

    Article  PubMed  Google Scholar 

  95. Schuler MK, Richter S, Beuthien-Baumann B et al (2013) PET/MRI imaging in high-risk sarcoma: first findings and solving clinical problems. Case Rep Oncol Med 2013:793927

    PubMed  PubMed Central  Google Scholar 

  96. Chaudhry AA, Gul M, Gould E et al (2016) Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging. World J Radiol 8:268–274

    Article  PubMed  PubMed Central  Google Scholar 

  97. Husseini JS, Balza R, Evangelista L et al (2022) PET/MR for evaluation of musculoskeletal malignancies. Clin Transl Imaging 10:71–83

    Article  Google Scholar 

  98. Ross JS, Sheehan CE, Fisher HAG et al (2003) Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 9:6357–6362

    CAS  PubMed  Google Scholar 

  99. Eiber M, Weirich G, Holzapfel K et al (2016) Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol 70:829–836

    Article  CAS  PubMed  Google Scholar 

  100. Muehlematter UJ, Burger IA, Becker AS et al (2019) Diagnostic accuracy of multiparametric MRI versus 68Ga-PSMA-11 PET/MRI for extracapsular extension and seminal vesicle invasion in patients with prostate cancer. Radiology 293:350–358

    Article  PubMed  Google Scholar 

  101. Donswijk ML, van Leeuwen PJ, Vegt E et al (2020) Clinical impact of PSMA PET/CT in primary prostate cancer compared to conventional nodal and distant staging: a retrospective single center study. BMC Cancer 20:723

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hofman MS, Lawrentschuk N, Francis RJ et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395:1208–1216

    Article  CAS  PubMed  Google Scholar 

  103. Zhao R, Li Y, Nie L et al (2021) The meta-analysis of the effect of 68Ga-PSMA-PET/CT diagnosis of prostatic cancer compared with bone scan. Medicine (Baltimore) 100:e25417

    Article  CAS  PubMed  Google Scholar 

  104. Guberina N, Hetkamp P, Ruebben H et al (2020) Whole-body integrated [68Ga]PSMA-11-PET/MR imaging in patients with recurrent prostate cancer: comparison with whole-body PET/CT as the standard of reference. Mol Imaging Biol 22:788–796

    Article  CAS  PubMed  Google Scholar 

  105. Mapelli P, Ghezzo S, Samanes Gajate AM et al (2022) 68Ga-PSMA and 68Ga-DOTA-RM2 PET/MRI in recurrent prostate cancer: diagnostic performance and association with clinical and histopathological data. Cancers (Basel) 14:334

    Article  CAS  PubMed  Google Scholar 

  106. Kranzbühler B, Müller J, Becker AS et al (2020) Detection rate and localization of prostate cancer recurrence using 68Ga-PSMA-11 PET/MRI in patients with low PSA values ≤ 0.5 ng/mL. J Nucl Med 61:194–201

    Article  PubMed  Google Scholar 

  107. Hoffmann MA, Wieler HJ, Baues C et al (2019) The impact of 68Ga-PSMA PET/CT and PET/MRI on the management of prostate cancer. Urology 130:1–12

    Article  PubMed  Google Scholar 

  108. Siva S, Udovicich C, Tran B et al (2020) Expanding the role of small-molecule PSMA ligands beyond PET staging of prostate cancer. Nat Rev Urol 17:107–118

    Article  PubMed  Google Scholar 

  109. Urso L, Castello A, Rocca GC et al (2022) Role of PSMA-ligands imaging in Renal Cell Carcinoma management: current status and future perspectives. J Cancer Res Clin Oncol 148:1299–1311

    Article  PubMed  PubMed Central  Google Scholar 

  110. Gao J, Xu Q, Fu Y et al (2021) Comprehensive evaluation of 68Ga-PSMA-11 PET/CT parameters for discriminating pathological characteristics in primary clear-cell renal cell carcinoma. Eur J Nucl Med Mol Imaging 48:561–569

    Article  CAS  PubMed  Google Scholar 

  111. Golan S, Aviv T, Groshar D et al (2021) Dynamic 68Ga-PSMA-11 PET/CT for the primary evaluation of localized renal mass: a prospective study. J Nucl Med 62:773–778

    Article  CAS  PubMed  Google Scholar 

  112. Mittlmeier LM, Unterrainer M, Rodler S et al (2021) 18F-PSMA-1007 PET/CT for response assessment in patients with metastatic renal cell carcinoma undergoing tyrosine kinase or checkpoint inhibitor therapy: preliminary results. Eur J Nucl Med Mol Imaging 48:2031–2037

    Article  CAS  PubMed  Google Scholar 

  113. Rowe SP, Gorin MA, Hammers HJ et al (2015) Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann Nucl Med 29:877–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rhee H, Blazak J, Tham CM et al (2016) Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res 6:76

    Article  PubMed  PubMed Central  Google Scholar 

  115. Meyer AR, Carducci MA, Denmeade SR et al (2019) Improved identification of patients with oligometastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann Nucl Med 33:617–623

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  117. Lee SI, Catalano OA, Dehdashti F (2015) Evaluation of gynecologic cancer with MR imaging, 18F-FDG PET/CT, and PET/MR imaging. J Nucl Med 56:436–443

    Article  PubMed  Google Scholar 

  118. Ponisio MR, Fowler KJ, Dehdashti F (2016) The emerging role of PET/MR imaging in gynecologic cancers. PET Clin 11:425–440

    Article  PubMed  Google Scholar 

  119. Sarabhai T, Schaarschmidt BM, Wetter A et al (2018) Comparison of 18F-FDG PET/MRI and MRI for pre-therapeutic tumor staging of patients with primary cancer of the uterine cervix. Eur J Nucl Med Mol Imaging 45:67–76

    Article  PubMed  Google Scholar 

  120. Kitajima K, Suenaga Y, Ueno Y et al (2014) Fusion of PET and MRI for staging of uterine cervical cancer: comparison with contrast-enhanced (18)F-FDG PET/CT and pelvic MRI. Clin Imaging 38:464–469

    Article  PubMed  Google Scholar 

  121. Tsuyoshi H, Tsujikawa T, Yamada S et al (2021) Diagnostic value of 18F-FDG PET/MRI for revised 2018 FIGO staging in patients with cervical cancer. Diagnostics (Basel) 11:202

    Article  CAS  PubMed  Google Scholar 

  122. Tsuyoshi H, Tsujikawa T, Yamada S et al (2020) Diagnostic value of [18F]FDG PET/MRI for staging in patients with ovarian cancer. EJNMMI Res 10:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Anner P, Mayerhöfer M, Wadsak W et al (2018) [18F]FDG-PET/CT and MRI for initial pelvic lymph node staging in patients with cervical carcinoma: The potential usefulness of [18F]FDG-PET/MRI. Oncol Lett. https://doi.org/10.3892/ol.2018.7775

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kitajima K, Suenaga Y, Ueno Y et al (2013) Value of fusion of PET and MRI for staging of endometrial cancer: comparison with 18F-FDG contrast-enhanced PET/CT and dynamic contrast-enhanced pelvic MRI. Eur J Radiol 82:1672–1676

    Article  PubMed  Google Scholar 

  125. Ironi G, Mapelli P, Bergamini A et al (2022) Hybrid PET/MRI in staging endometrial cancer: Diagnostic and predictive value in a prospective cohort. Clin Nucl Med 47:e221–e229

    Article  PubMed  Google Scholar 

  126. Graham MM, Gu X, Ginader T et al (2017) 68Ga-DOTATOC imaging of neuroendocrine tumors: A systematic review and metaanalysis. J Nucl Med 58:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V et al (2013) Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results. Invest Radiol 48:273–279

    Article  CAS  PubMed  Google Scholar 

  128. Sawicki LM, Deuschl C, Beiderwellen K et al (2017) Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT. Eur Radiol 27:4091–4099

    Article  PubMed  Google Scholar 

  129. Jawlakh H, Velikyan I, Welin S, Sundin A (2021) 68Ga-DOTATOC-PET/MRI and11C-5-HTP-PET/MRI are superior to68Ga-DOTATOC-PET/CT for neuroendocrine tumour imaging. J Neuroendocrinol. https://doi.org/10.1111/jne.12981

    Article  PubMed  Google Scholar 

  130. Berzaczy D, Giraudo C, Haug AR et al (2017) Whole-body 68Ga-DOTANOC PET/MRI versus 68Ga-DOTANOC PET/CT in patients with neuroendocrine tumors: a prospective study in 28 patients. Clin Nucl Med 42:669–674

    Article  PubMed  PubMed Central  Google Scholar 

  131. Alshammari A (2019) Impact of integrated whole body 68Ga PET/MR imaging in comparison with 68Ga PET/CT in lesions detection and diagnosis of suspected neuroendocrine tumours. Am J Intern Med 7:102

    Google Scholar 

  132. Seith F, Schraml C, Reischl G et al (2018) Fast non-enhanced abdominal examination protocols in PET/MRI for patients with neuroendocrine tumors (NET): comparison to multiphase contrast-enhanced PET/CT. Radiol Med 123:860–870

    Article  PubMed  Google Scholar 

  133. Fuin N, Pedemonte S, Catalano OA et al (2017) PET/MRI in the presence of metal implants: completion of the attenuation map from PET emission data. J Nucl Med 58:840–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Attenberger U, Catana C, Chandarana H et al (2015) Whole-body FDG PET-MR oncologic imaging: pitfalls in clinical interpretation related to inaccurate MR-based attenuation correction. Abdom Imaging 40:1374–1386

    Article  PubMed  Google Scholar 

  135. Gassert FG, Rübenthaler J, Cyran CC, et al (2021) 18F FDG PET/MRI with hepatocyte-specific contrast agent for M staging of rectal cancer: a primary economic evaluation. European Journal of Nuclear Medicine and Molecular Imaging

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

This article was conceptualized by OAC, FSF, MH, SM, HK, and AH performed the literature search and data analysis; FSF, MH, and OAC drafted the manuscript; and SM and OAC critically revised the work.

Corresponding author

Correspondence to Onofrio A. Catalano.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Ethics approval

This is a review study. This article does not contain any studies with human or animal subjects performed by the any of the authors. The Institutional Review Board has confirmed that no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furtado, F.S., Hesami, M., Mcdermott, S. et al. The synergistic effect of PET/MRI in whole-body oncologic imaging: an Expert Review. Clin Transl Imaging 11, 351–364 (2023). https://doi.org/10.1007/s40336-023-00577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00577-1

Keywords

Navigation