Skip to main content

Advertisement

Log in

Clinical applications of long axial field-of-view PET/CT scanners in oncology

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

To provide a comprehensive overview of the current main applications of long axial field-of-view (LAFOV) PET/CT in oncology.

Methods

Relevant studies published from 2017 up to September 2022 were selected by searching Scopus, PubMed, and Web of Science. The following data were extracted: characteristics of studies and patients, technical aspects, and usefulness of the LAFOV PET/CT in the oncological setting. Selected imaging studies were analyzed using a modified version of the Critical Appraisal Skills Programme (CASP).

Results

Seventeen papers were finally selected: 12 (70.6%) were retrospective, while 5 (29.4%) were prospective, with an overall number of 877 included patients. Most of the studies (14/17, 82.4%) employed [18F]-FDG as a radiopharmaceutical agent, 2 papers used [68Ga]-PSMA-11 and 1 employed mixed tracers. Eleven studies were focused on protocols at low/ultra-low activity or with fast/ultra-fast scanning time, 3 papers compared the performance of LAFOV PET/CT scanners with that of conventional (standard axial field-of-view/SAFOV) devices, 4 were total-body PET dynamic studies.

Conclusions

LAFOV PET/CT showed superior diagnostic performance than traditional SAFOV devices, allowing reduced activity/time and dynamic protocols. The applications of this novel technology in some clinical settings, mainly the pediatric population, are promising but should be a topic of future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Mankoff DA (2007) A definition of molecular imaging. J Nucl Med 48(18N):21N

    PubMed  Google Scholar 

  2. Rowe SP, Pomper MG (2022) Molecular imaging in oncology: current impact and future directions. CA Cancer J Clin 72:333–352. https://doi.org/10.3322/caac.21713

    Article  PubMed  Google Scholar 

  3. Urbano N, Scimeca M, Bonanno E, Schillaci O (2018) Nuclear medicine and anatomic pathology in personalized medicine: a challenging alliance. Pers Med 15:457–459. https://doi.org/10.2217/pme-2018-0050

    Article  CAS  Google Scholar 

  4. Alberts I, Hünermund J-N, Sachpekidis C et al (2021) The influence of digital PET/CT on diagnostic certainty and interrater reliability in [68Ga]Ga-PSMA-11 PET/CT for recurrent prostate cancer. Eur Radiol 31:8030–8039. https://doi.org/10.1007/s00330-021-07870-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Filippi L, Bagni O, Schillaci O (2022) Digital PET/CT with 18F-FACBC in early castration-resistant prostate cancer: our preliminary results. Expert Rev Med Devices 19:591–598. https://doi.org/10.1080/17434440.2022.2117612

    Article  CAS  PubMed  Google Scholar 

  6. Katal S, Eibschutz LS, Saboury B et al (2022) Advantages and applications of total-body PET scanning. Diagnostics 12:426. https://doi.org/10.3390/diagnostics12020426

    Article  PubMed  PubMed Central  Google Scholar 

  7. Filippi L, Dimitrakopoulou-Strauss A, Evangelista L, Schillaci O (2022) Long axial field-of-view PET/CT devices: are we ready for the technological revolution? Expert Rev Med Devices 19:739–743. https://doi.org/10.1080/17434440.2022.2141111

    Article  CAS  PubMed  Google Scholar 

  8. Yu H, Gu Y, Fan W et al (2022) Expert consensus on oncological [18F]FDG total-body PET/CT imaging (version 1). Eur Radiol. https://doi.org/10.1007/s00330-022-08960-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alberts I, Hünermund J-N, Prenosil G et al (2021) Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the biograph vision quadra with the biograph vision PET/CT. Eur J Nucl Med Mol Imaging 48:2395–2404. https://doi.org/10.1007/s00259-021-05282-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tan H, Sui X, Yin H et al (2021) Total-body PET/CT using half-dose FDG and compared with conventional PET/CT using full-dose FDG in lung cancer. Eur J Nucl Med Mol Imaging 48:1966–1975. https://doi.org/10.1007/s00259-020-05091-4

    Article  CAS  PubMed  Google Scholar 

  12. Hu Y, Liu G, Yu H et al (2022) Diagnostic performance of total-body 18F-FDG PET/CT with fast 2-min acquisition for liver tumours: comparison with conventional PET/CT. Eur J Nucl Med Mol Imaging 49:3538–3546. https://doi.org/10.1007/s00259-022-05772-2

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y-Q, Hu P-C, Wu R-Z et al (2020) The image quality, lesion detectability, and acquisition time of 18F-FDG total-body PET/CT in oncological patients. Eur J Nucl Med Mol Imaging 47:2507–2515. https://doi.org/10.1007/s00259-020-04823-w

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Hu P, He Y et al (2022) Ultrafast 30-s total-body PET/CT scan: a preliminary study. Eur J Nucl Med Mol Imaging 49:2504–2513. https://doi.org/10.1007/s00259-022-05838-1

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y, Liu G, Yu H et al (2022) Feasibility of acquisitions using total-body PET/CT with an ultra-low 18F-FDG activity. J Nucl Med 63:959–965. https://doi.org/10.2967/jnumed.121.262038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan H, Cai D, Sui X et al (2022) Investigating ultra-low-dose total-body [18F]-FDG PET/CT in colorectal cancer: initial experience. Eur J Nucl Med Mol Imaging 49:1002–1011. https://doi.org/10.1007/s00259-021-05537-3

    Article  PubMed  Google Scholar 

  17. Tan H, Mao W, Cao Y et al (2022) Half-dose versus full-dose 18F-FDG total-body PET/CT in patients with colorectal cancer. Nucl Med Commun 43:928–936. https://doi.org/10.1097/MNM.0000000000001589

    Article  CAS  PubMed  Google Scholar 

  18. Lv J, Yin H, Yu H et al (2022) The feasibility of ultralow-activity 18F-FDG dynamic PET imaging in lung adenocarcinoma patients through total-body PET/CT scanner. Ann Nucl Med 36:887–896. https://doi.org/10.1007/s12149-022-01772-2

    Article  CAS  PubMed  Google Scholar 

  19. Xiao J, Yu H, Sui X et al (2021) Can the BMI-based dose regimen be used to reduce injection activity and to obtain a constant image quality in oncological patients by 18F-FDG total-body PET/CT imaging? Eur J Nucl Med Mol Imaging 49:269–278. https://doi.org/10.1007/s00259-021-05462-5

    Article  CAS  PubMed  Google Scholar 

  20. (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 894:1–253

  21. Chen W, Liu L, Li Y et al (2022) Evaluation of pediatric malignancies using total-body PET/CT with half-dose [18F]-FDG. Eur J Nucl Med Mol Imaging 49:4145–4155. https://doi.org/10.1007/s00259-022-05893-8

    Article  CAS  PubMed  Google Scholar 

  22. Fahey FH, Goodkind A, MacDougall RD et al (2017) Operational and dosimetric aspects of pediatric PET/CT. J Nucl Med 58:1360–1366. https://doi.org/10.2967/jnumed.116.182899

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chawla SC, Federman N, Zhang D et al (2010) Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol 40:681–686. https://doi.org/10.1007/s00247-009-1434-z

    Article  PubMed  Google Scholar 

  24. Zhao Y-M, Li Y-H, Chen T et al (2021) Image quality and lesion detectability in low-dose pediatric 18F-FDG scans using total-body PET/CT. Eur J Nucl Med Mol Imaging 48:3378–3385. https://doi.org/10.1007/s00259-021-05304-4

    Article  CAS  PubMed  Google Scholar 

  25. Alberts I, Prenosil G, Mingels C et al (2021) Feasibility of late acquisition [68Ga]Ga-PSMA-11 PET/CT using a long axial field-of-view PET/CT scanner for the diagnosis of recurrent prostate cancer—first clinical experiences. Eur J Nucl Med Mol Imaging 48:4456–4462. https://doi.org/10.1007/s00259-021-05438-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Sluis J, van Snick JH, Brouwers AH et al (2022) EARL compliance and imaging optimisation on the biograph vision quadra PET/CT using phantom and clinical data. Eur J Nucl Med Mol Imaging 49:4652–4660. https://doi.org/10.1007/s00259-022-05919-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Feng T, Shen Y et al (2022) Total-body parametric imaging using the Patlak model: feasibility of reduced scan time. Med Phys 49:4529–4539. https://doi.org/10.1002/mp.15647

    Article  PubMed  Google Scholar 

  28. Wang D, Zhang X, Liu H et al (2022) Assessing dynamic metabolic heterogeneity in non-small cell lung cancer patients via ultra-high sensitivity total-body [18F]FDG PET/CT imaging: quantitative analysis of [18F]FDG uptake in primary tumors and metastatic lymph nodes. Eur J Nucl Med Mol Imaging 49:4692–4704. https://doi.org/10.1007/s00259-022-05904-8

    Article  CAS  PubMed  Google Scholar 

  29. Wen J, Zhu Y, Li L et al (2022) Determination of optimal 68 Ga-PSMA PET/CT imaging time in prostate cancers by total-body dynamic PET/CT. Eur J Nucl Med Mol Imaging 49:2086–2095. https://doi.org/10.1007/s00259-021-05659-8

    Article  CAS  PubMed  Google Scholar 

  30. Spencer BA, Berg E, Schmall JP et al (2021) Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med 62:861–870. https://doi.org/10.2967/jnumed.120.250597

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nadig V, Herrmann K, Mottaghy FM, Schulz V (2022) Hybrid total-body pet scanners—current status and future perspectives. Eur J Nucl Med Mol Imaging 49:445–459. https://doi.org/10.1007/s00259-021-05536-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

All the authors equally contributed to the conception and design of the article, or acquisition, analysis and interpretation of data; LU, VF, LF and LE wrote the initial draft of the manuscript; GDV and OS critically revised the manuscript for important intellectual content All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luca Filippi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urso, L., Frantellizzi, V., De Vincentis, G. et al. Clinical applications of long axial field-of-view PET/CT scanners in oncology. Clin Transl Imaging 11, 365–380 (2023). https://doi.org/10.1007/s40336-023-00547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-023-00547-7

Keywords

Navigation