Skip to main content

Advertisement

Log in

SSTR-based theranostics in neuroendocrine prostate cancer (NEPC)

  • Mini-review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

Prostate cancer (PCa) is the most commonly diagnosed malignancy in men and a high-ranking cause of cancer-related death. If properly managed, these patients can have an acceptable life expectancy. Therefore, the detection of lesions associated with the recurrence of PCa in the context of castration-resistant prostate cancer (CRPC) is an important diagnostic and therapeutic challenge for clinicians. One cause of CRPC is neuroendocrine differentiation (NE) of prostate cancer (NEPC). Efforts are underway to diagnose and treat this type of PCa. The objective of this study was to review the available evidence about the patients with NEPC undergoing SSTR2 targeting for either diagnostic or therapeutic purposes. Although there is still little information in this area, this review could lighten future studies.

Methods

A comprehensive literature search of published papers in the PubMed/MEDLINE database with the following search terms: (((dotatate[Title/Abstract]) OR (dotatoc[Title/Abstract])) OR (dotanoc[Title/Abstract])) AND (prostate[Title/Abstract]) was carried out. Relevant articles about NEPC, even case reports and interesting images, with a nuclear medicine approach were checked out to write this narrative review.

Results

NEPC may arise in the later stages of androgen receptor pathway inhibition (ARPI) treatment in PCa patients. NE differentiation reflects higher tumor aggression, and the overexpression of somatostatin receptors in these lesions could potentially be a favorite target for diagnostic purposes. However, there is no suitable biomarker reflecting NE differentiation or SSTR expression yet.

Conclusions

Since the main evidence in NEPC cells is the predominance of SSTR-1, theoretically the design of a radiopharmaceutical with greater affinity to this receptor could be useful for therapeutic and diagnostic purposes; however, the possibility of using peptide receptor radionuclide therapy (PRRNT) in patients with intense uptake of available radiotherapists (e.g., [68 Ga]Ga-DOTA-TATE) should not be ignored in following researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Data were obtained using a literature review that can be viewed based on given references.

Code availability

Not applicable.

References

  1. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The Epidemiology of Prostate Cancer. Cold Spring Harbor perspectives in medicine. 2018;8(12)

  2. Mottet N, van den Bergh RC, Briers E, Van den Broeck T, Cumberbatch MG, De Santis M et al (2021) EAU-EANM-ESTRO-ESUR-SIOG guidelines on prostate cancer—2020 update Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 79(2):243–62

    Article  CAS  PubMed  Google Scholar 

  3. McGeorge S, Kwok M, Jiang A, Emmett L, Pattison DA, Thomas PA et al (2021) Dual-tracer positron-emission tomography using prostate-specific membrane antigen and fluorodeoxyglucose for staging of prostate cancer: a systematic review. Adv Urol 2021:1544208

    Article  PubMed  PubMed Central  Google Scholar 

  4. Matei D-V, Renne G, Pimentel M, Sandri MT, Zorzino L, Botteri E et al (2012) Neuroendocrine differentiation in castration-resistant prostate cancer: a systematic diagnostic attempt. Clin Genitourin Cancer 10(3):164–173

    Article  PubMed  Google Scholar 

  5. Parimi V, Goyal R, Poropatich K, Yang XJ (2014) Neuroendocrine differentiation of prostate cancer: a review. Am J Clin Experim Urol 2(4):273–285

    Google Scholar 

  6. Makino T, Izumi K, Mizokami A (2021) Undesirable status of prostate cancer cells after intensive inhibition of AR signaling: Post-AR era of CRPC treatment. Biomedicines 9(4):414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bakht MK, Derecichei I, Li Y, Ferraiuolo RM, Dunning M, Oh SW et al (2018) Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. Endocr Relat Cancer 26(2):131–146

    Article  PubMed  Google Scholar 

  8. Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P et al (2020) Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet (London, England) 395(10231):1208–1216

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty PS, Tripathi M, Agarwal KK, Kumar R, Vijay MK, Bal C (2015) Metastatic poorly differentiated prostatic carcinoma with neuroendocrine differentiation: negative on 68Ga-PSMA PET/CT. Clin Nucl Med 40(2):e163–e166

    Article  PubMed  Google Scholar 

  10. Tosoian JJ, Gorin MA, Rowe SP, Andreas D, Szabo Z, Pienta KJ et al (2017) Correlation of PSMA-targeted (18)F-DCFPyL PET/CT findings with immunohistochemical and genomic data in a patient with metastatic neuroendocrine prostate cancer. Clin Genitourin Cancer 15(1):e65–e68

    Article  PubMed  Google Scholar 

  11. Usmani S, Ahmed N, Marafi F, Rasheed R, Amanguno HG, Al KF (2017) Molecular imaging in neuroendocrine differentiation of prostate cancer: 68Ga-PSMA versus 68Ga-DOTA NOC PET-CT. Clin Nucl Med 42(5):410–413

    Article  PubMed  Google Scholar 

  12. Sheikhbahaei S, Afshar-Oromieh A, Eiber M, Solnes LB, Javadi MS, Ross AE et al (2017) Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging 44(12):2117–2136

    Article  PubMed  Google Scholar 

  13. Vlachostergios PJ, Papandreou CN (2015) Targeting neuroendocrine prostate cancer: molecular and clinical perspectives. Front Oncol 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shen K, Liu B, Zhou X, Ji Y, Chen L, Wang Q, et al. The evolving role of 18F-FDG PET/CT in diagnosis and prognosis prediction in progressive prostate cancer. Front Oncol. 2021;11.

  15. Haroon A, Afaq A, Nuthakki S, Freeman A, Biassoni L, Fanti S et al (2018) Phenotypic appearances of prostate utilizing PET-MRI and PET-CT with 68Ga-PSMA, radiolabelled choline and 68Ga-DOTATATE. Nucl Med Commun 39(3):196–204

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Cheung SK, Wong KN, Wong KK, Ho CL (2016) 68Ga-DOTATOC and 68Ga-PSMA PET/CT unmasked a case of prostate cancer with neuroendocrine differentiation. Clin Nucl Med 41(12):959–960

    Article  PubMed  Google Scholar 

  17. Rüschoff JH, Ferraro DA, Muehlematter UJ, Laudicella R, Hermanns T, Rodewald AK et al (2021) What’s behind (68)Ga-PSMA-11 uptake in primary prostate cancer PET? Investigation of histopathological parameters and immunohistochemical PSMA expression patterns. Eur J Nucl Med Mol Imaging 48(12):4042–4053

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laudicella R, Rüschoff JH, Ferraro DA, Brada MD, Hausmann D, Mebert I et al (2022) Infiltrative growth pattern of prostate cancer is associated with lower uptake on PSMA PET and reduced diffusion restriction on mpMRI. Eur J Nucl Med Mol Imaging 49(11):3917–3928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Li W, Puzanov I, Goodrich David W, Chatta G, Tang DG (2022) Prostate cancer as a dedifferentiated organ: androgen receptor, cancer stem cells, and cancer stemness. Essays Biochem 66(4):291–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamada Y, Beltran H (2021) Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep 23(2):15

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bakht MK, Lovnicki JM, Tubman J, Stringer KF, Chiaramonte J, Reynolds MR et al (2020) Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for (18)F-FDG imaging of PSMA-suppressed tumors. J Nuclear Med 61(6):904–910

    Article  CAS  Google Scholar 

  22. Gofrit ON, Frank S, Meirovitz A, Nechushtan H, Orevi M (2017) PET/CT with 68Ga-DOTA-TATE for diagnosis of neuroendocrine: differentiation in patients with castrate-resistant prostate cancer. Clin Nucl Med 42(1):1–6

    Article  PubMed  Google Scholar 

  23. Rathke H, Holland-Letz T, Mier W, Flechsig P, Mavriopoulou E, Röhrich M et al (2020) Response prediction of (177)Lu-PSMA-617 Radioligand therapy using prostate-specific antigen, chromogranin A, and lactate dehydrogenase. J Nuclear Med 61(5):689–695

    Article  CAS  Google Scholar 

  24. Luboldt W, Zöphel K, Wunderlich G, Abramyuk A, Luboldt HJ, Kotzerke J (2010) Visualization of somatostatin receptors in prostate cancer and its bone metastases with Ga-68-DOTATOC PET/CT. Mol Imag Biol 12(1):78–84

    Article  Google Scholar 

  25. Spratt DE, Gavane S, Tarlinton L, Fareedy SB, Doran MG, Zelefsky MJ et al (2014) Utility of FDG-PET in clinical neuroendocrine prostate cancer. Prostate 74(11):1153–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y (2008) FDG PET-CT demonstration of metastatic neuroendocrine tumor of prostate. World J Surg Oncol 6(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bakht MK, Lovnicki JM, Tubman J, Stringer KF, Chiaramonte J, Reynolds MR et al (2020) Differential expression of glucose transporters and hexokinases in prostate cancer with a neuroendocrine gene signature: a mechanistic perspective for <sup>18</sup>F-FDG imaging of PSMA-suppressed tumors. J Nucl Med 61(6):904–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bauckneht M, Morbelli S, Miceli A, Rebuzzi SE, Fornarini G (2021) Neuroendocrine differentiation of prostate cancer is not systematically associated with increased 18F-FDG uptake. Diagnostics (Basel, Switzerland). 11(3):468

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Acar E, Kaya GÇ (2019) 18F-FDG, 68Ga-DOTATATE and 68Ga-PSMA positive metastatic large cell neuroendocrine prostate tumor. Clin Nucl Med 44(1):53–54

    Article  PubMed  Google Scholar 

  30. Heidenreich A, Aus G, Bolla M, Joniau S, Matveev VB, Schmid HP et al (2008) EAU guidelines on prostate cancer. Eur Urol 53(1):68–80

    Article  PubMed  Google Scholar 

  31. Koutsilieris M, Mitsiades CS, Bogdanos J, Dimopoulos T, Karamanolakis D, Milathianakis C et al (2004) Combination of somatostatin analog, dexamethasone, and standard androgen ablation therapy in stage D3 prostate cancer patients with bone metastases. Clin Cancer Res 10(13):4398–4405

    Article  CAS  PubMed  Google Scholar 

  32. Mitsiades CS, Bogdanos J, Karamanolakis D, Milathianakis C, Dimopoulos T, Koutsilieris M (2006) Randomized controlled clinical trial of a combination of somatostatin analog and dexamethasone plus zoledronate vs. zoledronate in patients with androgen ablation-refractory prostate cancer. Anticancer Res. 26(5B):3693–700

    CAS  PubMed  Google Scholar 

  33. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O’Dorisio MS et al (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40(5):800–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Savelli G, Muni A, Barbieri R, Valmadre G, Biasiotto G, Minari C et al (2014) Neuroendocrine differentiation of prostate cancer metastases evidenced “in Vivo” by (68)Ga-DOTANOC PET/CT: two cases. World J Oncol 5(2):72–76

    PubMed  PubMed Central  Google Scholar 

  35. Priftakis D, Kritikos N, Stavrinides S, Kleanthous S, Baziotis N (2015) Neuroendocrine differentiation in castration-resistant prostate cancer: A case report. Mol Clin Oncol 3(6):1392–1394

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hope TA, Aggarwal R, Simko JP, VanBrocklin HF, Ryan CJ (2015) Somatostatin imaging of neuroendocrine-differentiated prostate cancer. Clin Nucl Med 40(6):540–541

    Article  PubMed  Google Scholar 

  37. Nilsson S, Reubi JC, Kalkner K-M, Laissue JA, Horisberger U, Olerud C et al (1995) Metastatic hormone-refractory prostatic adenocarcinoma expresses somatostatin receptors and is visualized in vivo by [111In]-labeled DTPA-D-[Phe1]-octreotide scintigraphy. Can Res 55(23 Supplement):5805s-s5810

    CAS  Google Scholar 

  38. Kalkner KM, Acosta S, Thorsson O, Frederiksen H, Nilsson A, Gustavsson B et al (2006) Octreotide scintigraphy and Chromogranin A do not predict clinical response in patients with octreotide acetate-treated hormone-refractory prostate cancer. Prostate Cancer Prostatic Dis 9(1):92–98

    Article  CAS  PubMed  Google Scholar 

  39. Dos Santos G, García Fontes M, Engler H, Alonso O (2019) Intraindividual comparison of (68)Ga-DOTATATE PET / CT vs (11)C-Choline PET / CT in patients with prostate cancer in biochemical relapse: in vivo evaluation of the expression of somatostatin receptors. Rev Esp Med Nucl Imagen Mol 38(1):29–37

    PubMed  Google Scholar 

  40. Savelli G, Muni A, Falchi R, Zaniboni A, Barbieri R, Valmadre G et al (2015) Somatostatin receptors over-expression in castration resistant prostate cancer detected by PET/CT: preliminary report of in six patients. Annals Transl Med 3(10):145

    Google Scholar 

  41. Schmidt MQ, Trenbeath Z, Chin BB (2019) Neuroendocrine prostate cancer or prostatitis? An unusual false positive on gallium-68 DOTA-Tyr3-octreotate positron emission tomography/computed tomography in a patient with known metastatic neuroendocrine tumor. World J Nuclear Med 18(3):304–306

    Article  Google Scholar 

  42. Todorović-Tirnanić MV, Gajić MM, Obradović VB, Baum RP (2014) Gallium-68 DOTATOC PET/CT in vivo characterization of somatostatin receptor expression in the prostate. Cancer Biother Radiopharm 29(3):108–115

    PubMed  PubMed Central  Google Scholar 

  43. Wang J (2019) 68Ga-DOTATATE in benign prostate hyperplasia. Clin Nucl Med 44(3):249–250

    Article  PubMed  Google Scholar 

  44. Yilmaz B, Arslan HS, Gundogan C, Gunes MN, Cermik TF (2019) False-positive 68Ga-DOTATATE PET/CT in active chronic prostatitis. Clin Nucl Med 44(8):e499–e500

    Article  PubMed  Google Scholar 

  45. Laudicella R, Comelli A, Liberini V, Vento A, Stefano A, Spataro A, et al. [(68)Ga]DOTATOC PET/CT Radiomics to predict the response in GEP-NETs undergoing [(177)Lu]DOTATOC PRRT: The "Theragnomics" concept. Cancers (Basel). 2022;14(4)

  46. Cookson MS, Lowrance WT, Murad MH, Kibel AS (2015) Castration-resistant prostate cancer: AUA guideline amendment. J Urol 193(2):491–499

    Article  PubMed  Google Scholar 

  47. Bellmunt J, Rosenberg JE, Choueiri TK. Recent progress and pitfalls in testing novel agents in castration-resistant prostate cancer. Citeseer; 2009. p. 606–8.

  48. Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J et al (2019) EANM procedure guidelines for radionuclide therapy with 177 Lu-labelled PSMA-ligands (177 Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 46(12):2536–2544

    Article  PubMed  Google Scholar 

  49. Assadi M, Pirayesh E, Rekabpour SJ, Zohrabi F, Jafari E, Nabipour I et al (2019) 177Lu-PSMA and 177Lu-DOTATATE therapy in a patient with metastatic castration-resistant prostate cancer and neuroendocrine differentiation. Clin Nucl Med 44:978–980

    Article  PubMed  Google Scholar 

  50. Kosari F, Munz JMA, Savci-Heijink CD, Spiro C, Klee EW, Kube DM et al (2008) Identification of prognostic biomarkers for prostate cancer. Clin Cancer Res 14(6):1734–1743

    Article  CAS  PubMed  Google Scholar 

  51. Reubi J, Waser B, Schaer J-C, Laissue JA (2001) Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med 28(7):836–846

    Article  CAS  PubMed  Google Scholar 

  52. Derlin T, Werner RA, Lafos M, Henkenberens C, von Klot CAJ, Sommerlath Sohns JM et al (2020) Neuroendocrine differentiation and response to PSMA-targeted radioligand therapy in advanced metastatic castration-resistant prostate cancer: a single-center retrospective study. J Nuclear Med 61(11):1602–1606

    Article  CAS  Google Scholar 

  53. Mazzucchelli R, Morichetti D, Scarpelli M, Bono AV, Lopez-Beltran A, Cheng L et al (2011) Somatostatin receptor subtypes in hormone-refractory (castration-resistant) prostatic carcinoma. Asian J Androl 13(2):242

    Article  CAS  PubMed  Google Scholar 

  54. Dizeyi N, Bjartell A, Wu H, Gadaleanu V, Hansson J et al (2002) Localization and mRNA expression of somatostatin receptor subtypes in human prostatic tissue and prostate cancer cell lines. Urol Oncol Semin Orig Investig. 7(3):91–8

    CAS  Google Scholar 

  55. Sollini M, Erba PA, Fraternali A, Casali M, Di Paolo ML, Froio A et al (2014) PET and PET/CT with 68gallium-labeled somatostatin analogues in non GEP-NETs tumors. Scient World J. 2014:1

    Article  Google Scholar 

  56. Pedraza-Arévalo S, Hormaechea-Agulla D, Gómez-Gómez E, Requena MJ, Selth LA, Gahete MD et al (2017) Somatostatin receptor subtype 1 as a potential diagnostic marker and therapeutic target in prostate cancer. Prostate 77(15):1499–1511

    Article  PubMed  Google Scholar 

  57. Balestrieri A, Magnani E, Nuzzo F (2016) Unusual Cushing’s syndrome and hypercalcitoninaemia due to a small cell prostate carcinoma. Case Rep Endocrinol 2016:6308058

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Pejman Shahrokhi: reviewing and editing. Alireza Emami-Ardekani: reviewing and editing. Najme Karamzade-Ziarati: conceptualization, literature searching, drafting, image designing, reviewing and editing.

Corresponding author

Correspondence to Najme Karamzade-Ziarati.

Ethics declarations

Conflict of interest

Pejman Shahrokhi declares that he has no conflict of interest. Alireza Emami-Ardekani declares that he has no conflict of interest. Najme Karamzade-Ziarati declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrokhi, P., Emami-Ardekani, A. & Karamzade-Ziarati, N. SSTR-based theranostics in neuroendocrine prostate cancer (NEPC). Clin Transl Imaging 11, 321–328 (2023). https://doi.org/10.1007/s40336-022-00535-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-022-00535-3

Keywords

Navigation