Skip to main content

Advertisement

Log in

PET/MR for evaluation of musculoskeletal malignancies

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

To review the existing literature on PET/MR for musculoskeletal malignancies.

Methods

PubMed (MEDLINE) was searched through July 2021. The search strategy focused on the keywords “PET/CT”, “PET/MR”, “MRI”, “attenuation correction”, “sarcoma”, “skeletal”, “metastases”, “myeloma”, “FDG”, “Sodium fluoride”, “PSMA”, “DOTATATE”, “fluciclovine”, and “FAPI”.

Results

97 relevant papers were considered for review. Studies selected were primarily retrospective and prospective cohort studies. There is limited literature comparing PET/CT to PET/MR for evaluation of primary musculoskeletal malignancies and musculoskeletal metastatic disease. Most studies involve relatively small numbers of patients.

Conclusions

Despite limited evidence and the lack of widespread application, PET/MR is a promising imaging technique for evaluating musculoskeletal malignancies. This is owing primarily to the strength of its constituent modalities. PET permits for acquisition of metabolic information using a variety of emerging novel radiopharmaceuticals. MR allows for assessment of bone marrow and for identification and characterization of soft-tissue lesions. Selection of appropriate radiopharmaceutical and MR protocol parameters is key for optimal evaluation. Although PET/MR has shown promise in evaluation of musculoskeletal involvement of multiple malignancies, it has not yet demonstrated broad superior to PET/CT. More research is needed to understand its value in the care of patients with such diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoh CK (2007) Clinical use of FDG PET. Nucl Med Biol 34(7):737–742. https://doi.org/10.1016/j.nucmedbio.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  2. Bar-Shalom R, Yefremov N, Guralnik L et al (2003) Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44:1200–1209

    PubMed  Google Scholar 

  3. Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med Off Publ Soc Nucl Med 48(Suppl 1):78S-88S

    CAS  Google Scholar 

  4. Yang H-L, Liu T, Wang X-M et al (2011) Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 21:2604–2617

    Article  Google Scholar 

  5. Costelloe CM (2009) Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol 10:606–614

    Article  Google Scholar 

  6. Talbot JN, Paycha F, Balogova S (2011) Diagnosis of bone metastasis: recent comparative studies of imaging modalities. Q J Nucl Med Mol Imaging Publ Ital Assoc Nucl Med AIMN Int Assoc Radiopharm IAR Sect Soc Of 55:374–410

    CAS  Google Scholar 

  7. Buhmann Kirchhoff S, Becker C, Duerr HR et al (2009) Detection of osseous metastases of the spine: comparison of high resolution multi-detector-CT with MRI. Eur J Radiol 69:567–573

    Article  Google Scholar 

  8. Tehranzadeh J, Mnaymneh W, Ghavam C et al (1989) Comparison of CT and MR imaging in musculoskeletal neoplasms. J Comput Assist Tomogr 13:466–472

    Article  CAS  Google Scholar 

  9. Aisen AM (1986) MRI and CT evaluation of primary bone and soft-tissue tumors. AJR Am J Roentgenol 146:749–756

    Article  CAS  Google Scholar 

  10. Rosenkrantz AB, Friedman K, Chandarana H et al (2015) Current status of hybrid PET/MRI in oncologic imaging. Am J Roentgenol 206:162–172. https://doi.org/10.2214/AJR.15.14968

    Article  Google Scholar 

  11. Burger IA, Wurnig MC, Becker AS et al (2015) Hybrid PET/MR imaging: an algorithm to reduce metal artifacts from dental implants in Dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence. J Nucl Med Off Publ Soc Nucl Med 56:93–97. https://doi.org/10.2967/jnumed.114.145862

    Article  Google Scholar 

  12. Gunzinger JM, Delso G, Boss A et al (2014) Metal artifact reduction in patients with dental implants using multispectral three-dimensional data acquisition for hybrid PET/MRI. EJNMMI Phys 1:102. https://doi.org/10.1186/s40658-014-0102-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fuin N, Pedemonte S, Catalano OA et al (2017) PET/MRI in the presence of metal implants: completion of the attenuation map from PET emission data. J Nucl Med Off Publ Soc Nucl Med 58:840–845. https://doi.org/10.2967/jnumed.116.183343

    Article  CAS  Google Scholar 

  14. Dregely I, Lanz T, Metz S et al (2015) A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer. Eur Radiol 25:1154–1161. https://doi.org/10.1007/s00330-014-3445-x

    Article  PubMed  Google Scholar 

  15. Oehmigen M, Lindemann ME, Lanz T et al (2016) Integrated PET/MR breast cancer imaging: attenuation correction and implementation of a 16-channel RF coil. Med Phys 43:4808. https://doi.org/10.1118/1.4959546

    Article  PubMed  Google Scholar 

  16. Eldib M, Bini J, Calcagno C et al (2014) Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging. Invest Radiol 49:63–69. https://doi.org/10.1097/RLI.0b013e3182a530f8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eldib M, Bini J, Robson PM et al (2015) Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging. Phys Med Biol 60:4705–4717. https://doi.org/10.1088/0031-9155/60/12/4705

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frohwein LJ, Heß M, Schlicher D et al (2018) PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera. Phys Med Biol 63:025033. https://doi.org/10.1088/1361-6560/aa9e2f

    Article  CAS  PubMed  Google Scholar 

  19. Sander CY, Keil B, Chonde DB et al (2015) A 31-channel MR brain array coil compatible with positron emission tomography. Magn Reson Med 73:2363–2375. https://doi.org/10.1002/mrm.25335

    Article  PubMed  Google Scholar 

  20. Ahlawat S, Fayad LM (2018) Diffusion weighted imaging demystified: the technique and potential clinical applications for soft tissue imaging. Skelet Radiol 47:313–328. https://doi.org/10.1007/s00256-017-2822-3

    Article  Google Scholar 

  21. Fisher SM, Joodi R, Madhuranthakam AJ et al (2016) Current utilities of imaging in grading musculoskeletal soft tissue sarcomas. Eur J Radiol 85:1336–1344. https://doi.org/10.1016/j.ejrad.2016.05.003

    Article  PubMed  Google Scholar 

  22. Kransdorf MJ, Murphey MD (2016) Imaging of soft-tissue musculoskeletal masses: fundamental concepts. Radiogr Rev Publ Radiol Soc N Am Inc 36:1931–1948. https://doi.org/10.1148/rg.2016160084

    Article  Google Scholar 

  23. Zhang X, Chen Y-LE, Lim R et al (2016) Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging. Magn Reson Imaging 34:276–279. https://doi.org/10.1016/j.mri.2015.10.027

    Article  CAS  PubMed  Google Scholar 

  24. Yokouchi M, Terahara M, Nagano S et al (2011) Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma. BMC Musculoskelet Disord 12:166. https://doi.org/10.1186/1471-2474-12-166

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nanni C, Gasbarrini A, Cappelli A et al (2015) FDG PET/CT for bone and soft-tissue biopsy. Eur J Nucl Med Mol Imaging 42:1333–1334. https://doi.org/10.1007/s00259-015-3017-6

    Article  PubMed  Google Scholar 

  26. Kubo T, Furuta T, Johan MP, Ochi M (2016) Prognostic significance of (18)F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer Oxf Engl 58:104–111. https://doi.org/10.1016/j.ejca.2016.02.007

    Article  Google Scholar 

  27. Tateishi U, Hosono A, Makimoto A et al (2009) Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med 23:155–161. https://doi.org/10.1007/s12149-008-0219-z

    Article  PubMed  Google Scholar 

  28. Völker T, Denecke T, Steffen I et al (2007) Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol Off J Am Soc Clin Oncol 25:5435–5441. https://doi.org/10.1200/JCO.2007.12.2473

    Article  Google Scholar 

  29. Kneisl JS, Patt JC, Johnson JC, Zuger JH (2006) Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas? Clin Orthop 450:101–104. https://doi.org/10.1097/01.blo.0000229329.06406.00

    Article  PubMed  Google Scholar 

  30. Erfanian Y, Grueneisen J, Kirchner J et al (2017) Integrated 18F-FDG PET/MRI compared to MRI alone for identification of local recurrences of soft tissue sarcomas: a comparison trial. Eur J Nucl Med Mol Imaging 44:1823–1831. https://doi.org/10.1007/s00259-017-3736-y

    Article  PubMed  Google Scholar 

  31. Bosma SE, Vriens D, Gelderblom H et al (2019) 18F-FDG PET-CT versus MRI for detection of skeletal metastasis in Ewing sarcoma. Skeletal Radiol 48:1735–1746. https://doi.org/10.1007/s00256-019-03192-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Billingsley KG, Burt ME, Jara E et al (1999) Pulmonary metastases from soft tissue sarcoma: analysis of patterns of diseases and postmetastasis survival. Ann Surg 229:602–610. https://doi.org/10.1097/00000658-199905000-00002 (Discussion 610-612)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. García Franco CE, Torre W, Tamura A et al (2010) Long-term results after resection for bone sarcoma pulmonary metastases. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg 37:1205–1208. https://doi.org/10.1016/j.ejcts.2009.11.026

    Article  Google Scholar 

  34. Tabacchi E, Fanti S, Nanni C (2016) The possible role of PET imaging toward individualized management of bone and soft tissue malignancies. PET Clin 11:285–296. https://doi.org/10.1016/j.cpet.2016.02.011

    Article  PubMed  Google Scholar 

  35. Iagaru A, Chawla S, Menendez L, Conti PS (2006) 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 27:795–802. https://doi.org/10.1097/01.mnm.0000237986.31597.86

    Article  PubMed  Google Scholar 

  36. Raad RA, Friedman KP, Heacock L et al (2016) Outcome of small lung nodules missed on hybrid PET/MRI in patients with primary malignancy. J Magn Reson Imaging JMRI 43:504–511. https://doi.org/10.1002/jmri.25005

    Article  PubMed  Google Scholar 

  37. Benjamin MS, Drucker EA, McLoud TC, Shepard J-AO (2003) Small pulmonary nodules: detection at chest CT and outcome. Radiology 226:489–493. https://doi.org/10.1148/radiol.2262010556

    Article  PubMed  Google Scholar 

  38. Hanamiya M, Aoki T, Yamashita Y et al (2012) Frequency and significance of pulmonary nodules on thin-section CT in patients with extrapulmonary malignant neoplasms. Eur J Radiol 81:152–157. https://doi.org/10.1016/j.ejrad.2010.08.013

    Article  PubMed  Google Scholar 

  39. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27:165–176. https://doi.org/10.1053/ctrv.2000.0210

    Article  CAS  PubMed  Google Scholar 

  40. Riedl CC, Pinker K, Ulaner GA et al (2017) Comparison of FDG-PET/CT and contrast-enhanced CT for monitoring therapy response in patients with metastatic breast cancer. Eur J Nucl Med Mol Imaging 44:1428–1437. https://doi.org/10.1007/s00259-017-3703-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu T, Xu J-Y, Xu W et al (2011) Fluorine-18 deoxyglucose positron emission tomography, magnetic resonance imaging and bone scintigraphy for the diagnosis of bone metastases in patients with lung cancer: which one is the best?–a meta-analysis. Clin Oncol R Coll Radiol G B 23:350–358. https://doi.org/10.1016/j.clon.2010.10.002

    Article  Google Scholar 

  42. Beiderwellen K, Huebner M, Heusch P et al (2014) Whole-body [18F]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results. Eur Radiol 24:2023–2030. https://doi.org/10.1007/s00330-014-3229-3

    Article  PubMed  Google Scholar 

  43. Eiber M, Takei T, Souvatzoglou M et al (2014) Performance of whole-body integrated 18F-FDG PET/MR in comparison to PET/CT for evaluation of malignant bone lesions. J Nucl Med Off Publ Soc Nucl Med 55:191–197. https://doi.org/10.2967/jnumed.113.123646

    Article  Google Scholar 

  44. Samarin A, Hüllner M, Queiroz MA et al (2015) 18F-FDG-PET/MR increases diagnostic confidence in detection of bone metastases compared with 18F-FDG-PET/CT. Nucl Med Commun 36:1165–1173. https://doi.org/10.1097/MNM.0000000000000387

    Article  CAS  PubMed  Google Scholar 

  45. Lee SM (2016) Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT. Eur Radiol 26:3850–3857

    Article  Google Scholar 

  46. Fraioli F (2015) Non-small-cell lung cancer resectability: diagnostic value of PET/MR. Eur J Nucl Med Mol Imaging 42:49–55

    Article  CAS  Google Scholar 

  47. Melsaether AN (2016) Comparison of whole-body (18)F FDG PET/MR imaging and whole-body (18)F FDG PET/CT in terms of lesion detection and radiation dose in patients with breast cancer. Radiology 281:193–202

    Article  Google Scholar 

  48. Catalano OA (2015) Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer 112:1452–1460

    Article  CAS  Google Scholar 

  49. Shigematsu Y, Hirai T, Kawanaka K et al (2014) Distinguishing imaging features between spinal hyperplastic hematopoietic bone marrow and bone metastasis. AJNR Am J Neuroradiol 35:2013–2020. https://doi.org/10.3174/ajnr.A4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shortt CP (2009) Whole-Body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 192:980–986

    Article  Google Scholar 

  51. Caldarella C, Treglia G, Isgrò MA et al (2012) The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to treatment in patients with multiple myeloma. Int J Mol Imaging 2012:e175803. https://doi.org/10.1155/2012/175803

    Article  CAS  Google Scholar 

  52. Shortt CP, Gleeson TG, Breen KA et al (2009) Whole-Body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 192:980–986. https://doi.org/10.2214/AJR.08.1633

    Article  PubMed  Google Scholar 

  53. Zamagni E, Nanni C, Patriarca F et al (2007) A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 92:50–55. https://doi.org/10.3324/haematol.10554

    Article  PubMed  Google Scholar 

  54. Spinnato P, Bazzocchi A, Brioli A et al (2012) Contrast enhanced MRI and 18F-FDG PET-CT in the assessment of multiple myeloma: a comparison of results in different phases of the disease. Eur J Radiol 81:4013–4018. https://doi.org/10.1016/j.ejrad.2012.06.028

    Article  CAS  PubMed  Google Scholar 

  55. Cascini GL, Falcone C, Console D et al (2013) Whole-body MRI and PET/CT in multiple myeloma patients during staging and after treatment: personal experience in a longitudinal study. Radiol Med (Torino) 118:930–948. https://doi.org/10.1007/s11547-013-0946-7

    Article  Google Scholar 

  56. Pawlyn C, Fowkes L, Otero S et al (2016) Whole-body diffusion-weighted MRI: a new gold standard for assessing disease burden in patients with multiple myeloma? Leukemia 30:1446–1448. https://doi.org/10.1038/leu.2015.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sachpekidis C, Hillengass J, Goldschmidt H et al (2015) Comparison of (18)F-FDG PET/CT and PET/MRI in patients with multiple myeloma. Am J Nucl Med Mol Imaging 5:469–478

    PubMed  PubMed Central  Google Scholar 

  58. Shah SN, Oldan JD (2017) PET/MR imaging of multiple myeloma. Magn Reson Imaging Clin N Am 25:351–365. https://doi.org/10.1016/j.mric.2017.01.003

    Article  PubMed  Google Scholar 

  59. Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49. https://doi.org/10.1053/snuc.2001.18742

    Article  CAS  PubMed  Google Scholar 

  60. Piert M, Zittel TT, Becker GA et al (2001) Assessment of porcine bone metabolism by dynamic [18F] fluoride ion PET: correlation with bone histomorphometry. J Nucl Med 42:1091–1100

    CAS  PubMed  Google Scholar 

  61. Hawkins RA, Choi Y, Huang SC et al (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med Off Publ Soc Nucl Med 33:633–642

    CAS  Google Scholar 

  62. Schiepers C, Nuyts J, Bormans G et al (1997) Fluoride kinetics of the axial skeleton measured in vivo with fluorine-18-fluoride PET. J Nucl Med Off Publ Soc Nucl Med 38:1970–1976

    CAS  Google Scholar 

  63. Czernin J, Satyamurthy N, Schiepers C (2010) Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med Off Publ Soc Nucl Med 51:1826–1829. https://doi.org/10.2967/jnumed.110.077933

    Article  CAS  Google Scholar 

  64. Ueda CE, Duarte PS, de Castroneves LA et al (2020) Comparison of 18F-NaF PET/CT with other imaging methods in the detection of bone metastases in patients with medullary thyroid cancer: a report of a series of 31 cases. Nucl Med Mol Imaging 54:281–291. https://doi.org/10.1007/s13139-020-00666-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bucklan D, Muzic R, Faulhaber P, Jones R (2017) 18F NaF PET/MR for the evaluation of bone metastases in breast cancer patients: comparison to NaF PET/CT, FDG PET/CT, and MDP bone scan. J Nucl Med 58:472–472

    Google Scholar 

  66. Wallitt KL (2017) Clinical PET imaging in prostate cancer. Radiogr Rev Publ Radiol Soc N Am Inc 37:1512–1536

    Google Scholar 

  67. Maurer T, Beer AJ, Wester H-J et al (2014) Positron emission tomography/magnetic resonance imaging with 68Gallium-labeled ligand of prostate-specific membrane antigen: promising novel option in prostate cancer imaging? Int J Urol 21:1286–1288. https://doi.org/10.1111/iju.12577

    Article  CAS  PubMed  Google Scholar 

  68. Kabasakal L, Demirci E, Ocak M et al (2015) Evaluation of PSMA PET/CT imaging using a 68Ga-HBED-CC ligand in patients with prostate cancer and the value of early pelvic imaging. Nucl Med Commun 36:582–587. https://doi.org/10.1097/MNM.0000000000000290

    Article  CAS  PubMed  Google Scholar 

  69. Perera M, Papa N, Christidis D et al (2016) Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol 70:926–937. https://doi.org/10.1016/j.eururo.2016.06.021

    Article  PubMed  Google Scholar 

  70. De Coster L, Sciot R, Everaerts W et al (2017) Fibrous dysplasia mimicking bone metastasis on 68GA-PSMA PET/MRI. Eur J Nucl Med Mol Imaging 44:1607–1608. https://doi.org/10.1007/s00259-017-3712-6

    Article  PubMed  Google Scholar 

  71. Artigas C, Otte F-X, Lemort M et al (2017) Vertebral hemangioma mimicking bone metastasis in 68Ga—PSMA ligand PET/CT. Clin Nucl Med 42:368–370. https://doi.org/10.1097/RLU.0000000000001631

    Article  PubMed  Google Scholar 

  72. Sasikumar A, Joy A, Pillai MRA et al (2017) 68Ga-PSMA PET/CT Imaging in multiple myeloma. Clin Nucl Med 42:e126–e127. https://doi.org/10.1097/RLU.0000000000001479

    Article  PubMed  Google Scholar 

  73. Sasikumar A, Joy A, Nanabala R et al (2016) 68Ga-PSMA PET/CT false-positive tracer uptake in paget disease. Clin Nucl Med 41:e454. https://doi.org/10.1097/RLU.0000000000001340

    Article  PubMed  Google Scholar 

  74. Rhee H, Blazak J, Tham CM et al (2016) Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. https://doi.org/10.1186/s13550-016-0231-6

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kranzbühler B (2018) Clinical performance of 68Ga-PSMA-11 PET/MRI for the detection of recurrent prostate cancer following radical prostatectomy. Eur J Nucl Med Mol Imaging 45:20–30

    Article  Google Scholar 

  76. Freitag MT (2016) Comparison of hybrid (68)Ga-PSMA PET/MRI and (68)Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging 43:70–83

    Article  CAS  Google Scholar 

  77. Domachevsky L (2020) Comparison between pelvic PSMA-PET/MR and whole-body PSMA-PET/CT for the initial evaluation of prostate cancer: a proof of concept study. Eur Radiol 30:328–336

    Article  Google Scholar 

  78. Oka S (2007) A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med Publ Soc Nucl Med 48:46–55

    CAS  Google Scholar 

  79. Shoup TM (1999) Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med Publ Soc Nucl Med 40:331–338

    CAS  Google Scholar 

  80. Parent EE, Schuster DM (2018) Update on 18F-fluciclovine PET for prostate cancer imaging. J Nucl Med 59:733–739. https://doi.org/10.2967/jnumed.117.204032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oka S, Kanagawa M, Doi Y et al (2017) PET tracer 18F-fluciclovine can detect histologically proven bone metastatic lesions: a preclinical study in rat osteolytic and osteoblastic bone metastasis models. Theranostics 7:2048–2064. https://doi.org/10.7150/thno.19883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amorim BJ (2020) Performance of 18F-fluciclovine PET/MR in the evaluation of osseous metastases from castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 47:105–114

    Article  CAS  Google Scholar 

  83. Schuster DM, Nanni C, Fanti S et al (2014) Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med Off Publ Soc Nucl Med 55:1986–1992. https://doi.org/10.2967/jnumed.114.143628

    Article  CAS  Google Scholar 

  84. Hofman MS, Lau WFE, Hicks RJ (2015) Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiogr Rev Publ Radiol Soc N Am Inc 35:500–516. https://doi.org/10.1148/rg.352140164

    Article  Google Scholar 

  85. Subramaniam RM (2018) ACR practice parameter for the performance of gallium-68 DOTATATE PET/CT for neuroendocrine tumors. Clin Nucl Med 43:899–908

    Article  Google Scholar 

  86. Geijer H, Breimer LH (2013) Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 40:1770–1780

    Article  CAS  Google Scholar 

  87. Mojtahedi A, Thamake S, Tworowska I et al (2014) The value of 68Ga-DOTATATE PET/CT in diagnosis and management of neuroendocrine tumors compared to current FDA approved imaging modalities: a review of literature. Am J Nucl Med Mol Imaging 4:426–434

    PubMed  PubMed Central  Google Scholar 

  88. Sadowski SM, Neychev V, Millo C et al (2016) Prospective study of 68 Ga-DOTATATE positron emission tomography/computed tomography for detecting gastro-entero-pancreatic neuroendocrine tumors and unknown primary sites. J Clin Oncol 34:588–596. https://doi.org/10.1200/JCO.2015.64.0987

    Article  CAS  PubMed  Google Scholar 

  89. Panagiotidis E (2017) Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med Publ Soc Nucl Med 58:91–96

    Article  Google Scholar 

  90. Mackie EJ, Trechsel U, Bruns C (1990) Somatostatin receptors are restricted to a subpopulation of osteoblast-like cells during endochondral bone formation. Dev Camb Engl 110:1233–1239

    CAS  Google Scholar 

  91. Sonmezoglu K, Vatankulu B, Elverdi T et al (2017) The role of 68Ga-DOTA-TATE PET/CT scanning in the evaluation of patients with multiple myeloma: preliminary results. Nucl Med Commun 38:76–83. https://doi.org/10.1097/MNM.0000000000000610

    Article  PubMed  Google Scholar 

  92. Klinaki I, Al-Nahhas A, Soneji N, Win Z (2013) 68Ga DOTATATE PET/CT uptake in spinal lesions and MRI correlation on a patient with neuroendocrine tumor: potential pitfalls. Clin Nucl Med 38:449–453

    Article  Google Scholar 

  93. Brogsitter C, Hofmockel T, Kotzerke J (2014) 68Ga DOTATATE uptake in vertebral hemangioma. Clin Nucl Med 39:462–463

    Article  Google Scholar 

  94. Clifton-Bligh RJ, Hofman MS, Duncan E et al (2013) Improving diagnosis of tumor-induced osteomalacia with gallium-68 DOTATATE PET/CT. J Clin Endocrinol Metab 98:687–694. https://doi.org/10.1210/jc.2012-3642

    Article  CAS  PubMed  Google Scholar 

  95. Hamson EJ, Keane FM, Tholen S et al (2014) Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. PROTEOMICS Clin Appl 8:454–463. https://doi.org/10.1002/prca.201300095

    Article  CAS  PubMed  Google Scholar 

  96. Kratochwil C, Flechsig P, Lindner T et al (2019) 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med 60:801–805. https://doi.org/10.2967/jnumed.119.227967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen H, Pang Y, Wu J et al (2020) Comparison of [68Ga]Ga-DOTA-FAPI-04 and [18F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging 47:1820–1832. https://doi.org/10.1007/s00259-020-04769-z

    Article  PubMed  Google Scholar 

Download references

Funding

There is no source of funding for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JSH: literature search and review, writing, and editing; RB: literature search and review, writing, and editing; LE: editing and image acquisition; LGC: editing and image acquisition; OC: content planning, writing, and editing.

Corresponding author

Correspondence to Jad S. Husseini.

Ethics declarations

Conflict of interest

Dr Catalano has been a consultant for Siemens Healthineers and IBM, and receives research support from Bayer. He is a recipient of an IBM fellowship. The Martinos center receives research support from Siemens Healthineers and GE Healthcare. Drs Husseini, Balza, Evangelista, and García Cañamaque have no financial disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husseini, J.S., Balza, R., Evangelista, L. et al. PET/MR for evaluation of musculoskeletal malignancies. Clin Transl Imaging 10, 71–83 (2022). https://doi.org/10.1007/s40336-021-00470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-021-00470-9

Keywords

Navigation